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A DEFAULT CONTAGION MODEL FOR PRICING DEFAULTABLE BONDS

FROM AN INFORMATION BASED PERSPECTIVE

HIDETOSHI NAKAGAWA1 AND HIDEYUKI TAKADA2

Abstract. In this study, we introduce an extended model of the information based model of credit

risk proposed by Brody, Hughston and Macrina (2010) to a multi-name case to investigate how default

contagion risk influences the price fluctuation of defaultable discount bonds. Under the model with

a couple of obligors, we derive a stochastic differential equation for one defaultable zero-recovery

discount bond price process to reflect default contagion risk of a counterpart debt obligor. As a

consequence, we find that the excess rate of the return in the trend term of the bond consists of not

only the issuer’s hazard rate but also the counterpart obligor’s hazard rate adjusted with the “pseudo-

default loss” rate. We also find that the bond price can jump at the default time of the counterpart

by the amount dependent on the correlation between the issuer and the counterpart. Moreover, we

numerically examine the impact of default contagion risk on some bond price components within the

model.

KEY WORDS: Default contagion; Information-based approach; Defaultable discount bond

1. Introduction

In this paper, we study how default contagion influences the price fluctuation of defaultable discount

bonds by extending the market information flow-based model proposed by Brody et al. (2010) to a multi-

name case. We frequently observe that default events in the market can affect the credit quality of other

active companies typically in a negative way and can cause other default events in the worst case. Such

a phenomenon is often referred to as credit/default contagion. Many researchers (and practitioners)

take a great deal of interest in how to model credit/default contagion, since it is likely that accurate

estimation of credit/default contagion enables us to improve the measurement of counterparty risk,

valuation, and hedging of credit derivatives dependent on multiple names, and so on.

Various studies exist on the modeling of credit/default contagion. We roughly classify them into two

categories according to whether the contagion effect is introduced exogenously or endogenously in the

model. The models in one category evolved from the interacting default intensity model developed by

Jarrow and Yu (2001) and Davis and Lo (2001), where the default intensities are given exogenously to
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contain potential jumps due to contagion. Thus, the jump size of the intensities are viewed as the input

parameters of the model. The interacting intensity models are theoretically studied by Kusuoka (1999)

in terms of the measure change, and furthermore extended to a vast variety of models such as Yu (2007),

Herbertsson (2007), Frey and Backhaus (2008), Bielecki et al. (2008), Bielecki et al. (2009), Zheng and

Jiang (2009), and so forth. In addition, Coculescu (2017) assumes a pre-specified contagious impact

exogenously, but she discusses a more general framework so that we can consider some influences of the

history of defaults on credit risk evaluation.

The other category can be regarded as modeling based on the Bayesian update of the hidden state

of some factors: Schönbucher and Schubert (2001), (reorganized as Subsection 10.8.4 of Schönbucher

(2003)), Section 9 of McNeil et al. (2005), and Benzoni at al. (2015). In contrast, the models in this

category are conceptually inspired by empirical evidence reported by Das et al. (2011), Duffie et al.

(2009), and Azizpour et al. (2009). These formulations assume that the contagious jumps of credit

qualities are caused by discontinuous changes in the hidden state, and then endogenously determined

as an output of the model. In this sense, an application of stochastic filtering (Frey and Schmidt (2012),

Elliott and Shen (2015)) would also be categorized into this group.

We aim to consider modeling default contagion from the latter standpoint. Specifically, we use the

market information flow-based model first proposed by Brody et al. (2008) (reorganized as Brody et al.

(2011) and extended to credit risk modeling by the same authors (Brody et al. (2010)) as a starting

point. The motivation of Brody et al. (2010) is to model the “perceived” probability of default, which

can fluctuate depending on the information flow representing market sentiments of default risk. The

single-name case has been fully studied by Brody et al. (2010), but multi-name cases have not yet been

fully investigated. If their model is successfully extended to a multi-name setup, it is likely that the

contagion effects of default events can be discussed in terms of fragile market sentiments within the

information-based approach.

In addition, we remark that our model does not satisfy the so-called immersion property ((H)-

hypothesis) in the above studies. Therefore, we have to carefully examine how the filtrations are

specified and related to the processes in the model to achieve the price dynamics of the defaultable

bonds because any classical results under the immersion property cannot be directly applied. El Karoui

et al. (2010) proposed the density approach to discuss generally (rigorously) the contagion under the

enlargement of filtrations, and El Karoui et al. (2015) studied successive defaults within a multi-name

version of the density approach. In their approach, the conditional joint density of default times entirely

determines the structure of the contagion, and hence, the contagious jumps are endogenously given.

From a practical perspective, Crépey et al. (2013) and Crépey and Song (2017) constructed a specific

model based on a dynamic Gaussian copula for an application to counterparty risk management.
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With this background, we present an extended model of the market information flow-based model

proposed by Brody et al. (2010) to a multi-name case to quantitatively recognize the default contagion

effect on pricing defaultable discount bonds with zero recovery. To be more specific, we obtain some

general results for the conditional joint distributions of default times in the reference universe, and then

for the case of two debt obligors, we successfully derive a stochastic differential equation for a defaultable

zero-recovery discount bond price process to see the default contagion risk of a counterpart debt obligor.

As a consequence, we succeed to clarify how default risk dependence between two obligors in our model

are understandably related to the dynamics of the defaultable bond prices in terms of the martingales

which are given as compensated default indicator processes for both obligors as well as Brownian motions

derived from the market information flow of both obligors. Interestingly, our market information flow-

based model can be viewed as a dynamic version of the so-called Kusuoka’s counterexample model

(c.f. Kusuoka (1999), Bielecki and Rutkowski (2002)) since the default intensities (the compensator

of the default indicator processes) deduced from our model are dependent on whether the counterpart

has defaulted or not. To the best of our knowledge, this is the first work in the Bayesian updating

framework that shows the detailed interaction of defaultable bonds in terms of stochastic differential

equations with jumps, which enables us to comprehend the dynamics as such.

More specifically, our main results are summarized as follows. We see that if neither defaults, the

equation implies that the trend term (drift term) of the defaultable bond price process includes not

only of the hazard rate or the credit spread of the issuer but also of the counterpart obligor’s hazard

rate adjusted with the “pseudo-default loss” rate, although the underlying bond does not default due

to the counterpart obligor’s default. After the counterpart obligor’s default, the excess rate of the

return in the trend term is composed of only the issuer hazard rate, but the expression of the hazard

rate is different from that before the default of counterpart. Similarly if neither one defaults, a couple

of Brownian motions derived from the market information flow of both obligors randomly drive the

defaultable bond price process; however, after the counterpart obligor’s default, the Brownian motion

from the issuer’s market information flow is only the driver, where the volatility term changes from that

before the default of its counterpart.

Next, we observe that the bond price can jump at the default time of the counterpart obligor. The

consequence is consistent with the model assumption that the information is largely updated at the

counterpart default since the counterpart’s market factor is exactly revealed. We also notice whether

the bond price jumps upward or downward depending on the sign of the correlation parameter between

both market factors. In connection with this, we can note that such negatively correlated market

factors imply negative “pseudo-default loss” rate so that the trend term of the underlying bond before

the counterpart default can shrink compared to when the bond is evaluated alone.
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Then we show some numerical works to observe the quantitative effects of counterpart obligors’

default on the model components of the issuer. Indeed, we present some numerical illustrations on the

relationship between the model components and the market factor correlation as well as the upward

impact of counterpart obligors’ default on the time trend term of the defaultable bond price process.

From the practical point of view, it is undeniable that our model has some computational difficulties

for larger reference universe. However such difficulties are common among so-called bottom-up approach

models. Some previous studies (for example Herbertsson (2007)) adopt so-called top-down approaches

to bypass computational difficulties caused by combinatorial processing of the default occurrence order,

but their models cannot capture the idiosyncratic contagion effects that we aim to see. As such,

although there are still many challenges to put it into practical use, our results and considerations

arguably provide a theoretically new and useful perspective within the Bayesian updating framework

for credit risk modeling.

The remainder of this paper is organized as follows. In section 2, we introduce our information-

based model of default times and derive some important propositions to price contagious defaultable

discount bonds. In section 3, we describe our main theorem on the stochastic differential equation that

the defaultable bond price process follows, and we provide the proof of the theorem in Section 4. We

present some numerical illustrations in section 5, and finally, we conclude in Section 6.

2. Model and Preliminaries

2.1. Information-based model of default times. Under the assumption of no arbitrage, we model

a financial market that includes several defaultable instruments on a probability space (Ω,G,P), which

is rich enough to support some Brownian motions. We assume that P is a risk-neutral pricing measure.

The pricing measure P cannot be uniquely specified only by the assumption of no arbitrage due to market

incompleteness. In practice, however, this assumption is sufficient for the discussion that follows since

one can imply some model parameters under the pricing measure by calibrating the obtained pricing

model to corporate bond or credit default swap market data. In what follows, all expectations are taken

under the risk-neutral pricing measure P.

We consider n(∈ N) debt obligors and denote by τ1, · · · , τn random times, that is, nonnegative

G-random variables representing default times of the debt obligors, respectively. According to the

definition and notation for the single obligor default model of Brody et al. (2010), we assume that for

each i = 1, 2, · · · , n, the default time τi of the obligor i is modeled as

τi := h−1
i (Zi),(1)
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where hi is a continuous deterministic invertible increasing function with lim
s→0

hi(s) = −∞, lim
s→∞

hi(s) =

+∞, and Zi is a standard normal random variable representing some credit-related latent market factor

for the obligor i. The above specification of default time is analogue to the idea that each idiosyncratic

credit risk is driven by a latent normal-distributed factor in some simplified portfolio credit risk models

like ASFR Model (asymptotic single factor risk model). From another point of view, τi is supposed

to be a totally inaccessible stopping time since we assume that Zi is not perfectly observable. In this

sense, the formulation is classified into a so-called incomplete information approach such as Duffie and

Lando (2001), Nakagawa (2001), Çetin et al. (2004) and Jarrow and Protter (2004) for single-name case,

and Benzoni at al. (2015) for multi-name case. We remark that the market factor Zi is informationally

equivalent to the default time τi via the deterministic (hence completely known) function hi. We suppose

that the credit-related market factors Z1, . . . , Zn are correlated, so they follow an n-dimensional centered

correlated normal distribution.

Remark 2.1. Our formulation is regarded as a particular case of Brody et al. (2010) that models

τi := fi(X1, X2, · · · , Xn) with n independent random variables X1, X2, · · · , Xn and some n-variate

function fi.

Next, we introduce the concept of market information flow, whereby we can explicitly describe the

amount of available information associated with the credit-related market factor. We assume that

market participants can only access partial information with inseparable noise. More precisely, we

define the market filtration {Ft}, which stands for the information available to the market participants,

as shown below.

First, for each i = 1, . . . , n, let {ξit} be an i-th market information process associated with the market

factor Zi, which is specified in the following form.

ξit := σitZi +Bi
t, (1 ≤ i ≤ n)(2)

where σi > 0 is termed “information flow rate” (see Brody et al. (2010)), and {Bi
t : 1 ≤ i ≤ n} is

a set of n mutually independent standard Brownian motions that are independent of all the market

factors {Zi}i=1,...,n. Then, we specify a filtration {Ft} of the whole market information except for the

occurrence of defaults by

Ft := σ(ξis : 0 ≤ s ≤ t, 1 ≤ i ≤ n).

Then, let {Hi
t} be the filtration on the obligor i’s default defined by Hi

t := σ(τi ∧ s : 0 ≤ s ≤ t) for

all 1 ≤ i ≤ n, and let {Ht} be the filtration of the whole default information given by Ht :=
∨n

i=1 Hi
t.

Finally, we define Gt = Ft ∨ Ht for any t ≥ 0 and view the filtration {Gt} as the total information

available to the market participants.
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Remark 2.2. Clearly, the model permits the existence of an Ft-conditional joint density at(t1, · · · , tn)

of (τ1, · · · , τn) such that

P (τ1 > t1, · · · , τn > tn | Ft) =

∫ ∞

t1

· · ·
∫ ∞

tn

at(v1, · · · , vn)dv1 · · · dvn.

Then, it can be seen that the paper seeks to construct a typical (representative) example of the density

approach to credit risk. For the general theory of density approach, readers can refer to El Karoui et al.

(2010) for a single default, and El Karoui et al. (2015) for multiple defaults.

Proposition 2.3 (Markov property). For each i = 1, . . . , n, the information process {ξit} is a Markov

process with respect to the filtration (Ft)t≥0. Specifically, we have

P(ξit ≤ x | ξis, ξis1 , ξ
i
s2 , · · · , ξ

i
sk
) = P(ξit ≤ x | ξis),

for any collection of times t, s, s1, . . . , sk with t ≥ s ≥ s1 ≥ s2 ≥ · · · ≥ sk > 0.

Proof. See Brody et al. (2010) for the case of n = 1. The extension to the multi-name case is straight-

forward. □

Remark 2.4. F∞-measurability of Zi should be treated carefully. It follows from (2) that Zi =
1

σi

Å
ξit
t
− Bi

t

t

ã
for any t > 0. Hence we have

Zi =
1

σi
lim
t→∞

Å
ξit
t
− Bi

t

t

ã
=

1

σi
lim
t→∞

ξit
t

a.s.

because of the property of limt→∞Bi
t/t = 0 a.s., so we can see that Zi is F∞-measurable. However we

remark that Zi is not Ft-measurable for any finite t > 0. In other words, it is impossible to specify

Zi from observations of {ξit} during any finite period. This argument implies that 1{τi≤t} = P(τi ≤ t |

F∞) ̸= P(τi ≤ t | Ft) for any t ≥ 0, so our model does not satisfy the so-called immersion property

((H)-hypothesis).

2.2. Defaultable bond. A single obligor case (n=1) was studied in detail by Brody et al. (2010), while

multi-name cases (n ≥ 2) have not yet been fully investigated. We investigate information-based credit

contagion effects in terms of bond price dynamics. As we see later, the defaultable bond price processes

interact with each other via their trend and volatility term due to the Bayesian update of beliefs under

progressive enlargement of filtration. We begin with the generalized Dellacherie formula to deal with

the conditional expectation with respect to the global filtration. For notational convenience, we denote

by [n] := {1, 2, · · · , n} a set of all obligors in our universe.
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Proposition 2.5 (Generalized Dellacherie formula). Let Y be a G-measurable integrable random vari-

able, then

E[Y |Gt] =
∑
I⊂[n]

{ ∏
i∈I

1{τi≤t} ·
∏

j∈[n]\I

1{τj>t} ·
E
[
Y ·
∏

j∈[n]\I 1{τj>t}

∣∣∣Ft ∨
∨

i∈I Hi
∞

]
E
[∏

j∈[n]\I 1{τj>t}

∣∣∣Ft ∨
∨

i∈I Hi
∞

] }
.

Proof. See Chapter 3 of Elouerkhaoui (2017). □

Now we look at pricing of of defaultable zero-recovery discount bonds. Similar to Brody et al. (2010),

throughout the paper we assume that the credit risk-free interest rate process rt is deterministic. Hence

T -maturity credit risk-free discount bond price at time t, denoted by Pt,T := exp(−
∫ T

t
rudu), is also

deterministic. It is possible to make the credit risk-free interest rate stochastic without affecting our

discussion on credit risk modeling by introducing another information process as Section 2.2.2 of Yu

and Rutkowski (2007). However, our main concern is modeling the default contagion risk, so we need

to pay little attention to the risk-free rate dynamics.

The price at time t of a defaultable zero-recovery discount bond issued by obligor α ∈ [n] with

maturity T is given by

(3) D
(α)
t,T := Pt,T1{τα>t}E[1{τα>T}|Gt].

It follows from the Markov property of {ξit}, Proposition 2.5, and the property of Hi
∞ = σ{Zi} that

D
(α)
t,T = Pt,T1{τα>t}

∑
I⊂[n]\{α}

{ ∏
i∈I

1{τi≤t}
∏

j∈[n]\(I∪{α})

1{τj>t}

×
E
[
1{τα>T}

∏
j∈[n]\(I∪{α}) 1{τj>t}

∣∣∣Ft ∨
∨

i∈I Hi
∞

]
E
[∏

j∈[n]\I 1{τj>t}

∣∣∣Ft ∨
∨

i∈I Hi
∞

] }
(4)

= Pt,T1{τα>t}
∑

I⊂[n]\{α}

{ ∏
i∈I

1{τi≤t}
∏

j∈[n]\(I∪{α})

1{τj>t}

×
P
(
{τα > T} ∩ {τj > t | j ∈ [n]\I}

∣∣∣ {ξjt }j∈[n]\I , {Zi}i∈I

)
P
(
{τj > t | j ∈ [n]\I}

∣∣∣ {ξjt }j∈[n]\I , {Zi}i∈I

) }

Example 2.6. For n = 2, the discount bond price formulas D
(1)
t,T and D

(2)
t,T can be reduced to the

following simple expressions:

D
(1)
t,T = Pt,T

ß
1{τ1>t,τ2>t}

P(τ1 > T, τ2 > t | ξ1t , ξ2t )
P(τ1 > t, τ2 > t | ξ1t , ξ2t )

+ 1{τ1>t,τ2≤t}
P(τ1 > T | ξ1t , Z2)

P(τ1 > t | ξ1t , Z2)

™
,

D
(2)
t,T = Pt,T

ß
1{τ1>t,τ2>t}

P(τ1 > t, τ2 > T | ξ1t , ξ2t )
P(τ1 > t, τ2 > t | ξ1t , ξ2t )

+ 1{τ1≤t,τ2>t}
P(τ2 > T | ξ2t , Z1)

P(τ2 > t | ξ2t , Z1)

™
.
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To obtain a specific representation of D
(α)
t,T given in (4), we need to calculate the conditional proba-

bilities that appear in (4). For this purpose, we present the following two propositions. In the following,

we use a simplified notations such as (zi)i∈[n] for z1, · · · , zn, and (dzj)j∈[n] for dz1dz2 · · · dzn, and so on.

Proposition 2.7. On the set {τ1 > t, · · · , τn > t}, that is, if no default happens until t, we have for

each α ∈ [n] and for any s (≥ t),

P
(
{τα > s} ∩ {τj > t | j ̸= α}

∣∣∣ {ξjt }j∈[n]

)

=

∫
Rn

1{zα>hα(s)}
∏
j ̸=α

1{zj>hj(t)}p0
(
(zj)j∈[n]

)
exp

(
n∑

i=1

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
(dzj)j∈[n]

∫
Rn

p0
(
(zj)j∈[n]

)
exp

(
n∑

i=1

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
(dzj)j∈[n]

,

where p0
(
(zj)j∈[n]

)
= p0(z1, . . . , zn) is the unconditional joint density of the credit-related market factors

(Z1, . . . , Zn), that is, the joint density of a correlated normal distribution with zero mean and unit

variance.

Proof. On the set {τ1 > t, · · · , τn > t}, we see

P
(
{τα > s} ∩ {τj > t | j ̸= α}

∣∣∣ {ξjt }j∈[n]

)
= P

(
{Zα > hα(s)} ∩ {Zj > hj(t) | j ̸= α}

∣∣∣ {ξjt }j∈[n]

)
=

∫
Rn

1{zα>hα(s)}
∏
j ̸=α

1{zj>hj(t)}πt
(
(zj)j∈[n]

)
(dzj)j∈[n],

where πt
(
(zj)j∈[n]

)
denotes the conditional joint density of (Zj)j∈[n] given {ξjt }j∈[n]. From the Markov

property of {ξit}, it can be rewritten as

πt
(
(zj)j∈[n]

)
(dzj)j∈[n] = P

(
{Zj ∈ dzj}j∈[n] | {ξjt }j∈[n]

)
.

Furthermore, the Bayes formula implies that

P
(
{Zj ∈ dzj}j∈[n] | {ξjt }j∈[n]

)
=

P
(
{ξjt }j∈[n] | {Zj = zj}j∈[n]

)
p0
(
(zj)j∈[n]

)
(dzj)j∈[n]∫

Rn

P
(
{ξjt }j∈[n] | {Zj = zj}j∈[n]

)
p0
(
(zj)j∈[n]

)
(dzj)j∈[n]

(5)

where p0
(
(zj)j∈[n]

)
is the prior density of (Zj)j∈[n]. We remark that ξit|Zi=zi and ξjt |Zj=zj are (con-

ditionally) independent if i ̸= j, as {Bj
t }j∈[n] are mutually independent Brownian motions. Hence we

have

ξjt
∣∣
Zj=zj

∼ N
(
σjtzj , t

)
, j = 1, 2, · · · , n.
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Then, the likelihood is obtained as

P
(
{ξjt }j∈[n] | {Zj = zj}j∈[n]

)
=

1

(2πt)
n
2
exp

(
− 1

2t

n∑
i=1

(
ξit − σitzi

)2)
.(6)

Inserting (6) into (5) yields

πt
(
(zj)j∈[n]

)
=

p0
(
(zj)j∈[n]

)
exp

(
n∑

i=1

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
∫

Rn

p0
(
(zj)j∈[n]

)
exp

(
n∑

i=1

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
(dzj)j∈[n]

,

and assertion follows. □

In addition, let It := {i ∈ [n] : τi ≤ t} be a set of defaulted obligors up to time t, and Jt := [n]\It a

set of surviving obligors at time t. Specifically, rearrange the order of the obligors so that the elements

in It come after those in Jt whenever a default occurs.

Proposition 2.8. Suppose that α ∈ Jt. Then, for any s (≥ t),

P
(
{τα > s} ∩ {τj > t | j ∈ Jt\{α}}

∣∣∣ {ξjt }j∈Jt
, {Zi}i∈It

)

=

∫
R|Jt|

1{zα>hα(s)}
∏

j∈Jt\{α}

1{zj>hj(t)}p
(
(zj)j∈Jt | {Zi}i∈It

)
exp

(∑
i∈Jt

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
(dzj)j∈Jt

∫
R|Jt|

∏
j∈Jt

1{zj>hj(t)}p
(
(zj)j∈Jt

| {Zi}i∈It

)
exp

(∑
i∈Jt

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
(dzj)j∈Jt

,

where p
(
(zj)j∈Jt

| {Zi}i∈It

)
denotes the conditional joint density of (Zj)j∈Jt

given the market factors

for the obligors that defaulted up to and including time t. Additionally, the symbol |A| stands for the

number of elements in set A.

Proof. To begin with, we consider the case where only the first default happened up to time t. Based

on our tentative rule about the rearrangement of the labels, we can divide [n] into Jt = {1, 2, · · · , n−1}

and It = {n}. Market participants can realize Zn = hn(τn) for t ≥ τn, and then the joint density of

(Zj)j∈Jt
would be altered at the first default time τn. Since τn ≤ t < τj for j ∈ Jt and hj is increasing,

the market participants can recognize from (1) that hj(τn) ≤ hj(t) < hj(τj) = Zj for j ∈ Jt. Therefore,
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the first default time τn yields the information of Zn = hn(τn). Then we have, for s ≥ t ≥ τn,

P
(
{τα > s} ∩ {τj > t | j ̸= α, n}

∣∣∣ {ξjt }j∈[n−1], Zn

)
= P

(
{Zα > hα(s)} ∩ {Zj > hj(t) | j ̸= α, n}

∣∣∣ {ξjt }j∈[n−1], τn

)
=

∫
Rn−1

P
(
{Zα > hα(s)} ∩ {Zj > hj(t) | j ̸= α, n}

∣∣∣ {ξjt }j∈[n−1], τn, {Zj = zj}j∈[n−1]

)
× P

(
{Zj ∈ dzj}j∈[n−1] | {ξjt }j∈[n−1], τn

)
=

∫
Rn−1

1{zα>hα(s)}
∏

j ̸=α,n

1{zj>hj(t)} ×
∏

j∈[n−1]

1{zj>hj(t)}P
(
{Zj ∈ dzj}j∈[n−1] | {ξjt }j∈[n−1], τn

)
=

∫
Rn−1

1{zα>hα(s)}
∏

j ̸=α,n

1{zj>hj(t)}π
(n)
t (dzj)j∈[n−1],

where we set

π
(n)
t (dzj)j∈[n−1] :=

∏
j∈[n−1]

1{zj>hj(t)}P
(
{Zj ∈ dzj}j∈[n−1] | {ξjt }j∈[n−1], Zn

)
as the conditional joint posterior of (Zj)j∈[n−1] given {ξjt }j∈[n−1] and τn. Using the Bayes formula,

π
(n)
t (dzj)j∈[n−1] =

∏
j∈[n−1]

1{zj>hj(t)}p
(
(zj)j∈[n−1] | Zn

)
p
(
(ξjt )j∈[n−1] | (zj)j∈[n−1]

)
(dzj)j∈[n−1]∫

Rn−1

∏
j∈[n−1]

1{zj>hj(t)}p
(
(zj)j∈[n−1] | Zn

)
p
(
(ξjt )j∈[n−1] | (zj)j∈[n−1]

)
(dzj)j∈[n−1]

.

Here, the conditional normal distribution p
(
(zj)j∈[n−1] | Zn

)
is obtained by its conditional mean vector

and covariance matrix,

E[(Z1, · · · , Zn−1)
⊤|Zn = zn] = Γ12Γ

−1
22 zn,(7)

Cov[(Z1, · · · , Zn−1)
⊤|Zn = zn] = Γ11 − Γ12Γ

−1
22 Γ21,(8)

where the full covariance matrix Γ ∈ Rn×n of (Z1, · · · , Zn) is assumed to be block structured as follows:

Γ =

 Γ11 Γ12

Γ21 Γ22

 , Γ11 ∈ R(n−1)×(n−1),Γ12 = Γ⊤
21 ∈ R(n−1)×1,Γ22 ∈ R.

Similar to Proposition 2.7, we remark that

P
(
(ξjt )j∈[n−1] | (zj)j∈[n−1]

)
=

1

(2πt)
n−1
2

exp

(
− 1

2t

[ ∑
j∈[n−1]

(
ξjt − σjtzj

)2])
.
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It follows

P
(
{τα > s} ∩ {τj > t | j ̸= α, n}

∣∣∣ {ξjt }j∈[n−1], Zn

)

=

∫
Rn−1

1{zα>hα(s)}

{ ∏
j ̸=α,n

1{zj>hj(t)}

}
p
(
(zj)j∈[n−1] | Zn

)
exp

( ∑
i∈[n−1]

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
(dzj)j∈[n−1]

∫
Rn−1

{ ∏
j∈[n−1]

1{zj>hj(t)}

}
p
(
(zj)j∈[n−1] | Zn

)
exp

( ∑
i∈[n−1]

(
σiziξ

i
t −

t

2
σ2
i z

2
i

))
(dzj)j∈[n−1]

.

It remains to prove the general case (i.e., the default obligor set It has two or more elements). This

can be achieved with a slight change in the above proof. Although it is possible to derive the formula

recursively as time progresses, we can express it exactly by referring to the default history. Indeed, we

have

P
(
{τα > s} ∩ {τj > t | j ∈ Jt\{α}}

∣∣∣ {ξjt }j∈Jt
, {Zi}i∈It

)
=

∫
R|Jt|

1{zα>hα(s)}
∏

j∈Jt\{α}

1{zj>hj(t)}π
(It)
t (dzj)j∈Jt ,

where the conditional joint posterior of (Zj)j∈Jt
given {ξjt }j∈Jt

and {Zi}i∈It
is given as

π
(It)
t (dzj)j∈Jt

:=
∏
i∈It

(∏
j∈Jt

1{zj>hj(t)}

)
·P
(
{Zj ∈ dzj}j∈Jt

∣∣ {ξjt }j∈Jt
, {Zi = hi(τi)}i∈It

)
.

Hence, the Bayes formula implies that

π
(It)
t (dzj)j∈Jt =

∏
j∈Jt

1{zj>hj(t)}p
(
(zj)j∈Jt

| {Zi}i∈It

)
p
(
(ξjt )j∈Jt

| (zj)j∈Jt

)
(dzj)j∈Jt∫ ∞

−∞

∏
j∈Jt

1{zj>hj(t)}p
(
(zj)j∈Jt

| {Zi}i∈It

)
p
(
(ξjt )j∈Jt

| (zj)j∈Jt

)
(dzj)j∈Jt

.

Therefore, it is straightforward to obtain the formula for the general case. Finally, we remark that the

conditional joint distribution p
(
(zj)j∈Jt

| {Zi}i∈It

)
can also be determined by the same formulas as (7)

and (8) with the conditions zi = hi(τi) for all i ∈ It. □

Remark 2.9. It is a valuable information that “there has been no default up to time t.” In this sense,

Proposition 2.8 includes It = ∅ as a special case if we interpret {Zi}i∈∅ as the information of Zj > hj(t)

for any j ∈ [n], and we substitute p0
(
(zj)j∈[n]

)
for p ((zj)j∈Jt | {Zi}i∈It).

Consequently, combining the generalized Dellacherie formula (4) with Propositions 2.7 and 2.8, we

can derive the formula for the defaultable discount bond price. We note that the dynamics of D
(α)
t,T

depend on ξαt and ξit (i ̸= α). This feature provides an enriched structure of interactions.
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Corollary 2.10. In the case of n = 2 with Corr(Z1, Z2) = ρ ∈ (−1, 1), the defaultable discount bond

price of obligor 1 is given by

D
(1)
t,T = Pt,T1{τ1>t,τ2>t}

∫ ∞

h1(T )

∫ ∞

h2(t)

p0(z1, z2) exp
( 2∑
i=1

(σiziξ
i
t −

t

2
σ2
i z

2
i )
)
dz1dz2∫ ∞

h1(t)

∫ ∞

h2(t)

p0(z1, z2) exp
( 2∑
i=1

(σiziξ
i
t −

t

2
σ2
i z

2
i )
)
dz1dz2

(9)

+ Pt,T1{τ1>t,τ2≤t}

∫ ∞

h1(T )

p(z1 | Z2) exp
(
σ1z1ξ

1
t − t

2σ
2
1z

2
1

)
dz1∫ ∞

h1(t)

p(z1 | Z2) exp
(
σ1z1ξ1t − t

2σ
2
1z

2
1

)
dz1

,

where

p0(z1, z2) =
1

2π
√
1− ρ2

exp
(
− 1

2(1− ρ2)
(z21 − 2ρz1z2 + z22)

)
,

p(z1 | Z2) =
1√

2π(1− ρ2)
exp
(
− 1

2(1− ρ2)

(
z1 − ρ · Z2

)2)
.

Proof. We remember that the expression of D
(1)
t,T seen in Example 2.6 contains the following conditional

probabilities:

P(τ1 > T, τ2 > t | ξ1t , ξ2t ),P(τ1 > t, τ2 > t | ξ1t , ξ2t ),P(τ1 > T | ξ1t , Z2), and P(τ1 > t | ξ1t , Z2).

We apply Proposition 2.7 with n = 2 and α = 1 to obtain for s ≥ t

P(τ1 > s, τ2 > t | ξ1t , ξ2t ) =

∫ ∞

h1(s)

∫ ∞

h2(t)

p0(z1, z2) exp
( 2∑
i=1

(σiziξ
i
t −

t

2
σ2
i z

2
i )
)
dz1dz2∫ ∞

−∞

∫ ∞

−∞
p0(z1, z2) exp

( 2∑
i=1

(σiziξ
i
t −

t

2
σ2
i z

2
i )
)
dz1dz2

.

Similarly, it follows from Proposition 2.8 with n = 2 and α = 1, It = {2} that for s ≥ t

P(τ1 > s | ξ1t , Z2) =

∫ ∞

h1(s)

p(z1 | Z2) exp
(
σ1z1ξ

1
t − t

2σ
2
1z

2
1

)
dz1∫ ∞

h1(h
−1
2 (Z2))

p(z1 | Z2) exp
(
σ1z1ξ1t − t

2σ
2
1z

2
1

)
dz1

.

Finally, the formula (9) can be obtained by substituting the expressions with s = T or t in the form of

a ratio of integrals as above for the conditional probabilities in Example 2.6. □

We note that the second term of (9) has a similar form for the single obligor case (n = 1) derived

in Brody et al. (2010) if the conditional density p(z1 | τ2) is replaced by the unconditional density.

Therefore, we are interested in how the first term of (9) works and what happens on the bond price
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issued by obligor 1 at the default time of obligor 2. To illustrate the default contagion effects of our

model, we present some simulated trajectories of discount bond prices {D(1)
tT }0≤t≤T using the Monte

Carlo method based on Corollary 2.10.

We demonstrate a couple of cases: a highly correlated case ρ = 0.8 and a moderately correlated

case ρ = 0.4. We suppose rt ≡ 0.05(constant), σ1 = σ2 = 1, and T = 1 (year) for all the cases. For

the numerical simulation, we discretize the time interval [0, 1] into 0 = t0, t1, · · · , t250 = T with a fixed

time interval ∆t := tk − tk−1 = 1/250. In addition, we assume that the functions hi (i = 1, 2) are

specified by τi = h−1
i (Zi) := − log (Φ(−Zi)) /λ̄i with parameters λ̄1 = 0.02 and λ̄2 = 0.05, respectively,

where Φ denotes the standard normal distribution function. Such a specification of hi follows from the

naive assumption that the default time τi follows the exponential distribution with constant hazard

rate λ̄i, namely, P(τi > t) = exp(−λ̄it). To make it easier to see the contagion impact of obligor 2’s

default upon obligor 1, we assume that obligor 2 always defaults at τ2 = 0.5. This assumption implies

that we fix Z2 = −1.9653 from the definition of h2 above. In addition, we set Z1 = −1.0 so that

obligor 1 never defaults during the interval [0, 1]. Thus, we fix the credit-related market factors as

(Z1, Z2) = (−1.0,−1.9653) for any case.

Figure 1 shows the three simulated sample trajectories on the interval [0,1] of the bond price process

D
(1)
t,1 with fixed default time τ2 = 0.5 of obligor 2, respectively, for the case of ρ = 0.8 (left panel) and

ρ = 0.4 (right panel). We can easily observe that the downward jump size of D
(1)
τ2,1

is larger for the

highly correlated case ρ = 0.8 than for the moderately correlated case ρ = 0.4.

Figure 1. Simulated sample trajectories on the interval [0,1] of the bond price process

D
(1)
t,1 with fixed default time τ2 = 0.5 of obligor 2. (Left panel) the case of ρ = 0.8.

(Right panel) the case of ρ = 0.4
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As we will see later, our formulation can be seen as a dynamical extension of the information-based

default contagion in the factor Copula model described in subsection 9.8 in McNeil et al. (2005) to

consider successive observation of noisy information associated with the factor vector. This extension

enables us to see that the stochastic dynamics of bonds are mutually affected by one another in a more

general form.

3. Main results for the case n = 2

This section aims to derive a system of stochastic differential equations that follow the defaultable

discount bond price processes {D(i)
t,T }i∈[n] given in (3) follow. Our main objective of this study is to

investigate the default contagion impact on the active bond price processes in our model, so it is useful

to see how these bonds interact in terms of stochastic differential equations. Here we show the result for

the case of n = 2 to avoid complicated expressions for the general n case1. Appendix mentions the case

of n = 3. We remember that the bond price processes {D(i)
t,T }i=1,2 are {Gt}-adapted, so we expect that

the bond prices processes can be represented in terms of some {Gt}-Brownian motions derived from the

continuous market information process {ξit}i=1,2 as well as some {Gt}-martingales associated with the

jumps at default times {τi}i=1,2. Before the main theorem, we introduce {Gt}-Brownian motions for

the case of general n as follows.

Proposition 3.1 ({Gt}-Brownian motions). Let

W
(i|G)
t := ξit − σi

∫ t

0

E[Zi | Gs]ds, i ∈ [n].

Then, {W (i|G)
t }i∈[n] are mutually independent {Gt}-Brownian motions.

Proof. As in the n = 1 case, which was proven in Brody et al. (2010), we rely on Levy’s characterization

theorem. See Theorem 3.6 of Revuz and Yor (1999). It follows from (2) that the bracket ⟨W (i|G),W (j|G)⟩t
can be calculated as follows.

⟨W (i|G),W (j|G)⟩t =
≠
ξi − σi

∫ ·

0

E[Zi | Gs]ds , ξ
i − σj

∫ ·

0

E[Zj | Gs]ds

∑
t

= ⟨ξi, ξj⟩t = ⟨Bi, Bj⟩t = δijt.

1This comes from the combinatorial explosion of the order of multiple defaults due to a bottom up approach. This difficulty
would be mitigated if we consider homogeneous universe in the sense that the joint prior has homogeneous variances and

pairwise correlations, and then simply focus on the order of defaults.
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For t ≤ u because W
(i|G)
t is Gt-measurable and {Bi

t} is a {Gt ∨ σ(Zi)}-Brownian motion, by using the

tower property, it follows that

E
[
W (i|G)

u

∣∣∣Gt

]
=W

(i|G)
t + E

[
ξiu − ξit − σi

∫ u

t

E[Zi | Gs]ds

∣∣∣∣∣Gt

]

=W
(i|G)
t + E

[
σiZi(u− t) +Bi

u −Bi
t − σi

∫ u

t

E[Zi | Gs]ds

∣∣∣∣∣Gt

]

=W
(i|G)
t + E

[
σiZi(u− t) + E

[
Bi

u −Bi
t

∣∣Gt ∨ σ(Zi)
]
−σi

∫ u

t

E[Zi | Gs]ds

∣∣∣∣∣Gt

]

=W
(i|G)
t + σiE[Zi | Gt](u− t)− σi

∫ u

t

E[ E[Zi | Gs] | Gt]ds

=W
(i|G)
t + σiE[Zi | Gt](u− t)− σiE[Zi | Gt](u− t)

=W
(i|G)
t .

This implies that {W (i|G)
t } is a {Gt}-martingale. Therefore, by Levy’s characterizationt theorem, we

can conclude that {W (i|G)
t : i = 1, · · · , n} are mutually independent {Gt}-Brownian motions. □

Remark 3.2. We remark that the optional sampling theorem implies thatW
(i|G)
t∧τi is a {Gt∧τi}-martingale,

and thus a {Gt}-martingale. In fact, we can see

W
(i|G)
t∧τi = ξit∧τi − σi

∫ t∧τi

0

E[Zi | Gs]ds =

∫ t

0

1{τi>s}
(
dξis − σiE[Zi | Gs]ds

)
.

This representation implies that the process W
(i|G)
t∧τi is just the same as the martingale introduced by

Brody et al. (2010).

Proposition 3.3 ({Gt}-compensated jump martingales). Define the processes λ
(1|G)
t and λ

(2|G)
t by

λ
(1|G)
t := 1{τ2>t}

ψt,1(h1(t), h2(t))

φt(h1(t), h2(t); 1)
+ 1{τ2≤t}

ψ̂t,1(h1(t), h2(τ2))

φ̂t,1(h1(t), h2(τ2); 1)
,

λ
(2|G)
t := 1{τ1>t}

ψt,2(h1(t), h2(t))

φt(h1(t), h2(t); 1)
+ 1{τ1≤t}

ψ̂t,2(h1(τ1), h2(t))

φ̂t,2(h1(τ1), h2(t); 1)
,

where for z1, z2 ∈ R and a random variable Y , we set

φt(z1, z2;Y ) := E
[
1{Z1>z1}1{Z2>z2}Y | ξ1t , ξ2t

]
,

φ̂t,1(z1, z2;Y ) := E
[
1{Z1>z1}Y | ξ1t , Z2 = z2

]
, φ̂t,2(z1, z2;Y ) := E

[
1{Z2>z2}Y | ξ2t , Z1 = z1

]
ψt,1(z1, z2) := P

(
Z1 = z1, Z2 > z2 | ξ1t , ξ2t

)
, ψt,2(z1, z2) := P

(
Z1 > z1, Z2 = z2 | ξ1t , ξ2t

)
,

ψ̂t,1(z1, z2) := P
(
Z1 = z1 | ξ1t , Z2 = z2

)
, ψ̂t,2(z1, z2) := P

(
Z2 = z2 | ξ2t , Z1 = z1

)
.
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Then the process λ
(1|G)
t (resp. λ

(2|G)
t ) is an {Ft}∨{H2

t }-default intensity of obligor 1 (resp. {Ft}∨{H1
t }-

default intensity of obligor 2). In other words, the following compenseted jump processes 1{τ1≤t} −∫ t

0
1{τ1>s}λ

(1|G)
s ds and 1{τ2≤t} −

∫ t

0
1{τ2>s}λ

(2|G)
s ds are {Gt}-martingales.

Proof. We have

λ
(1|G)
t = 1{τ2>t}

ψt,1(h1(t), h2(t))

φt(h1(t), h2(t); 1)
+ 1{τ2≤t}

ψ̂t,1(h1(t), h2(τ2))

φ̂t,1(h1(t), h2(τ2); 1)

= 1{τ2>t}
P(Z1 = h1(t), Z2 > h2(t) | ξ1t , ξ2t )
P(Z1 > h1(t), Z2 > h2(t) | ξ1t , ξ2t )

+ 1{τ2≤t}
P(Z1 = h1(t) | ξ1t , Z2 = h2(τ2))

P(Z1 > h1(t) | ξ1t , Z2 = h2(τ2))

= 1{τ2>t}
P(Z1 = h1(t) | ξ1t , ξ2t , Z2 > h2(t))

P(Z1 > h1(t) | ξ1t , ξ2t , Z2 > h2(t))
+ 1{τ2≤t}

P(Z1 = h1(t) | ξ1t , Z2 = h2(τ2))

P(Z1 > h1(t) | ξ1t , Z2 = h2(τ2))

= 1{τ2>t}
− ∂

∂tP(τ1 > t | Ft ∨H2
t )

P(τ1 > t | Ft ∨H2
t )

+ 1{τ2≤t}
− ∂

∂tP(τ1 > t | Ft ∨H2
t )

P(τ1 > t | Ft ∨H2
t )

= 1{τ2>t}

(
− ∂

∂t
logP(τ1 > t | Ft ∨H2

t )

)
+ 1{τ2≤t}

(
− ∂

∂t
logP(τ1 > t | Ft ∨H2

t )

)

= − ∂

∂t
logP(τ1 > t | Ft ∨H2

t ),

which proves

exp

(
−
∫ t

0

λ(1|G)
u du

)
= exp

(
−
∫ t

0

(
− ∂

∂u
logP(τ1 > u | Fu ∨H2

u)
)
du

)

= exp
(
logP(τ1 > t | Ft ∨H2

t )− logP(τ1 > 0)
)

= P(τ1 > t | Ft ∨H2
t ).

Consequently, λ
(1|G)
t (resp. λ

(2|G)
t ) can be seen as the instantaneous hazard rate process for τ1 (resp.

τ2). Thus Proposition 5.1.3 in Bielecki and Rutkowski (2002) implies that λ
(1|G)
t (resp. λ

(2|G)
t ) can

be regarded as the {Ft} ∨ {H2
t }-default intensity of obligor 1 (resp. {Ft} ∨ {H1

t }-default intensity of

obligor 2), meaning that 1{τ1≤t} −
∫ t

0
1{τ1>s}λ

(1|G)
s ds (resp. 1{τ2≤t} −

∫ t

0
1{τ2>s}λ

(2|G)
s ds) becomes a

{Gt}-martingale. □

Remark 3.4. Strictly, the default intensity λ
(1|G)
t (resp. λ

(2|G)
t ) should be written by λ

(1|F∨H2)
t (resp.

λ
(2|F∨H1)
t ) so as to clarify which filtration the process is adapted to. However, for notational simplicity,

we use the notation λ
(1|G)
t (resp. λ

(2|G)
t ).

From the last proposition it follows that our model can be viewed as a dynamic version of the so-

called Kusuoka’s counterexample model (c.f. Kusuoka (1999), Bielecki and Rutkowski (2002)) since the

default intensities λ
(1|G)
t and λ

(2|G)
t are specified dependent on whether the counterpart has defaulted or

not. Furthermore it follows from Example 2.6 that λ
(1|G)
t can be regarded as the instantaneous credit
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spread at time t for obligor 1 on the set {τ1 > t} as below:

− ∂

∂T
log

D
(1)
tT

Pt,T

∣∣∣∣
T=t

=
Pt,T

D
(1)
tT

®
1{τ2>t}

− ∂
∂T P(τ1 > T, τ2 > t | ξ1t , ξ2t )
P(τ1 > t, τ2 > t | ξ1t , ξ2t )

+ 1{τ2≤t}
− ∂

∂T P(τ1 > T | ξ1t , Z2)

P(τ1 > t | ξ1t , Z2)

´ ∣∣∣∣
T=t

= 1{τ2>t}
ψt,1(h1(t), h2(t))

φt(h1(t), h2(t); 1)
+ 1{τ2≤t}

ψ̂t,1(h1(t), h2(τ2))

φ̂t,1(h1(t), h2(τ2); 1)
= λ

(1|G)
t .

Now, we state our main result on the stochastic differential equation followed by the bond price

process {D(i)
tT }i=1,2 for the case of two debt obligors 1 and 2.

Theorem 3.5. Let W
(i|G)
t (i = 1, 2) be the Gt}-Brownian motions defined in Proposition 3.1. Also,

let λ
(i|G)
t (i = 1, 2) be the default intensities and φt, φ̂t,i, ψt,i, ψ̂t,i (i = 1, 2) be the functions, defined

in Proposition 3.3. The defaultable discount bond price processes {D(1)
tT } and {D(2)

tT } with maturity

T issued by obligor 1 and 2 respectively given in (9) satisfy the following two dimensional (backward)

stochastic differential equation (SDE):Ñ
D

(1)
TT

D
(2)
TT

é
=

Ñ
1{τ1>T}

1{τ2>T}

é
and for t < T , we haveÑ

dD
(1)
tT

dD
(2)
tT

é
=

Ñ
D

(1)
t−,T 0

0 D
(2)
t−,T

é{Ñ
rt + λ

(1|G)
t + η

(2|G)
1:tT

rt + λ
(2|G)
t + η

(1|G)
2:tT

é
dt+

Ñ
Σ

(1|G)
1:tT Σ

(2|G)
1:tT

Σ
(1|G)
2:tT Σ

(2|G)
2:tT

éÑ
σ1dW

(1|G)
t

σ2dW
(2|G)
t

é
−

Ñ
1 1− Ξ

(2|G)
1:tT

1− Ξ
(1|G)
2:tT 1

éÑ
d1{τ1≤t}

d1{τ2≤t}

é}
=

Ñ
D

(1)
t−,T 0

0 D
(2)
t−,T

é{
rtdt+

Ñ
Σ

(1|G)
1:tT Σ

(2|G)
1:tT

Σ
(1|G)
2:tT Σ

(2|G)
2:tT

éÑ
σ1dW

(1|G)
t

σ2dW
(2|G)
t

é
−

Ñ
1 1− Ξ

(2|G)
1:tT

1− Ξ
(1|G)
2:tT 1

éÑ
d1{τ1≤t} − 1{τ1>t}λ

(1|G)
t

d1{τ2≤t} − 1{τ2>t}λ
(2|G)
t

é}
,



18 HIDETOSHI NAKAGAWA AND HIDEYUKI TAKADA

where

Ξ
(2|G)
1:tT :=

φt(h1(t), h2(t); 1)

φt(h1(T ), h2(t); 1)

φ̂t,1(h1(T ), h2(t); 1)

φ̂t,1(h1(t), h2(t); 1)
, Ξ

(1|G)
2:tT :=

φt(h1(t), h2(t); 1)

φt(h1(t), h2(T ); 1)

φ̂t,2(h1(t), h2(T ); 1)

φ̂t,2(h1(t), h2(t); 1)
,

η
(2|G)
1:tT := 1{τ2>t}

(
ψt,2(h1(t), h2(t))

φt(h1(t), h2(t); 1)︸ ︷︷ ︸
=1{τ1>t}λ

(2|G)
t

− ψt,2(h1(T ), h2(t))

φt(h1(T ), h2(t); 1)

) Ä
= 1{τ2>t}λ

(2|G)
t

Ä
1− Ξ

(2|G)
1:tT

ä
on {τ1 > t}

ä
,

η
(1|G)
2:tT := 1{τ1>t}

(
ψt,1(h1(t), h2(t))

φt(h1(t), h2(t); 1)︸ ︷︷ ︸
=1{τ2>t}λ

(1|G)
t

− ψt,1(h1(t), h2(T ))

φt(h1(t), h2(T ); 1)

) Ä
= 1{τ1>t}λ

(1|G)
t

Ä
1− Ξ

(1|G)
2:tT

ä
on {τ2 > t}

ä
,

Σ
(1|G)
1:tT := 1{τ2>t}

Å
φt(h1(T ), h2(t);Z1)

φt(h1(T ), h2(t); 1)
− φt(h1(t), h2(t);Z1)

φt(h1(t), h2(t); 1)

ã
+ 1{τ2≤t}

Å
φ̂t,1(h1(T ), h2(τ2);Z1)

φ̂t,1(h1(T ), h2(τ2); 1)
− φ̂t,1(h1(t), h2(τ2);Z1)

φ̂t,1(h1(t), h2(τ2); 1)

ã
,

Σ
(2|G)
1:tT := 1{τ2>t}

Å
φt(h1(T ), h2(t);Z2)

φt(h1(T ), h2(t); 1)
− φt(h1(t), h2(t);Z2)

φt(h1(t), h2(t); 1)

ã
,

Σ
(1|G)
2:tT := 1{τ1>t}

Å
φt(h1(t), h2(T );Z1)

φt(h1(t), h2(T ); 1)
− φt(h1(t), h2(t);Z1)

φt(h1(t), h2(t); 1)

ã
,

Σ
(2|G)
2:tT := 1{τ1>t}

Å
φt(h1(t), h2(T );Z2)

φt(h1(t), h2(T ); 1)
− φt(h1(t), h2(t);Z2)

φt(h1(t), h2(t); 1)

ã
+ 1{τ1≤t}

Å
φ̂t,2(h1(τ1), h2(T );Z2)

φ̂t,2(h1(τ1), h2(T ); 1)
− φ̂t,2(h1(τ1), h2(t);Z2)

φ̂t,2(h1(τ1), h2(t); 1)

ã
.

As for the functions φt and ψ, we can enlarge their definition to the case of general n. Specifically,

for any sets I,J ⊂ [n] with I ∪ J = [n], I ∩ J = ∅, we define as below. For z1, · · · , zn ∈ R and a

random variable Y , we define

φt,J ((zj)j∈[n];Y ) := E

[ ∏
j∈J

1{Zj>zj}Y | (ξjt )j∈J , {Zi = zi}i∈I

]
,(10)

ψt,k,J ((zj)j∈[n]) := P
Ä
Zk = zk, {Zj > zj}j∈J\{k} | (ξjt )j∈J , {Zi = zi}i∈I

ä
for k ∈ J .(11)

In this sense, we note that the notation for n = 2 in the theorem is redefined for simplicity as follows:

φt(z1, z2;Y ) = φt,[2](z1, z2;Y ), φ̂t(z1, z2;Y ) = φt,{1}(z1, z2;Y ),

ψt,k(z1, z2) = ψt,k,[2] (k = 1, 2), ψ̂t,1(z1, z2) = ψt,1,{1}(z1, z2).

There are some considerations on the stochastic differential equations in the theorem. Because of

symmetry, we discuss only from the perspective of obligor 1 hereafter. Hence, for notational convenience,
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we will write η
(2|G)
tT (resp. Ξ

(2|G)
tT ,Σ

(1|G)
t,T ,Σ

(2|G)
t,T ) for η

(2|G)
1:tT (resp. Ξ

(2|G)
1:tT ,Σ

(1|G)
1:t,T ,Σ

(2|G)
1:t,T ) when it is clear

from the context that we are discussing about the obligor 1.

First, we notice that all the stochastic drivers of the bond price process can be regarded as {Gt}-

martingales since the discounted bond price process {P−1
tT D

(1)
tT }t∈[0,T ] is a {Gt}-martingale. Indeed, we

find that the second representation implies that the dynamics of the defaultable discount bond D
(1)
tT be-

fore the counterpart obligor 2’s default time τ2 is driven by the {Gt}-Brownian motions (W
(1|G)
t ,W

(2|G)
t )

as well as the compensated default indicator processes, 1{τ1≤t} −
∫ t

0
1{τ1>s}λ

(1|G)
s ds and 1{τ2≤t} −∫ t

0
1{τ2>s}λ

(2|G)
s ds. On the other hand, after obligor 2’s default, the defaultable discount bond D

(1)
tT is

driven only byW
(1|G)
t and 1{τ1≤t}−

∫ t

0
1{τ1>s}λ

(1|G)
s ds, and the default intensity λ

(1|G)
t and the volatility

Σ
(1|G)
1:tT for obligor 1 are different from the ones before τ2.

Second, we note that the jump impact of obligor 2’s default at time τ2 on the bond price D
(1)
tT is

given as follows:

D
(1)
τ2,T

−D
(1)
τ2−,T = −D(1)

τ2−,T

Ä
1− Ξ

(2|G)
τ2,T

ä
= Pτ2T

Å
φ̂τ2(h1(T ), h2(τ2); 1)

φ̂τ2(h1(τ2), h2(τ2); 1)
− φτ2(h1(T ), h2(τ2); 1)

φτ2(h1(τ2), h2(τ2); 1)

ã
.

The last equality follows from the argument in Subsection 4.3. This implies that the bond price can jump

at the default time of the counterpart obligor because the information is largely updated by revealing

the market factor of the counterpart, even though the bond does not default due to the counterpart

obligor’s default. Therefore, we can regard Ξ
(2|G)
tT as the “pseudo recovery rate” (or 1 − Ξ

(2|G)
tT stands

for the “pseudo loss rate”) by obligor 2’s default since it looks like the recovery rate of market value

despite not actually falling into default. This consideration means that the obligor 1’s bond is faced

with the risk which falls into pseudo default due to the obligor 2’s default.

Third, we observe the equality η
(2|G)
tT = λ

(2|G)
t (1 − Ξ

(2|G)
tT ). While we can interpret η

(2|∅)
tT as the

difference of the conditional hazard rates for the obligor 2 given obligor 1’s survival between time t and

T , we view λ
(2|G)
t (1− Ξ

(2|G)
tT ) as the product of the instantaneous hazard rate of obligor 2 and “pseudo

loss rate” by obligor 2’s default as one can see from the previous two considerations. Such a specification

is similar to the argument that the credit spread can be specified by the hazard rate and the fractional

recovery (or loss given default) of market value (c.f. Duffie and Singleton (1999), Bielecki and Rutkowski

(2002)). In this sense, it seems interesting that the trend term in the first SDE representation implies

that the excess rate over the default-free interest rate rt is composed of not only the term λ
(1|G)
t , the

instantaneous hazard rate or credit spread of obligor 1, but also the term 1{τ2>t}η
(2|G)
tT regarding the

credit quality of obligor 2, although obligor 2’s default does not necessarily cause the default of the

bond issued by obligor 1. Also, we discuss the sign of the term η
(2|G)
tT in the proposition below. As is
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shown in Proposition 3.6 below, if the market factors are negatively correlated, the component η
(2|G)
tT

can be negative; hence, the trend term can shrink compared to when the underlying bond is evaluated

alone. In other words, whether the bond price jumps upward or downward depends on the sign of the

correlation parameter ρ between both market factors. The impact of defaults on the price of defaultable

securities are discussed in some previous studies: a copula dependent model (McNeil et al. (2005)), an

information-based default contagion model (Section 9.8 of McNeil et al. (2005)), and a density approach

(El Karoui et al. (2015), Crépey et al. (2013), Crépey and Song (2017)).

Finally, we mention that the volatility component Σ
(j|G)
tT , corresponding to the Brownian motion

term dW
(j|G)
t , can be regarded as the difference between the following conditional expectations: for

τ2 > t,

Σ
(j|G)
tT = E [Zj | Ft, Z1 > h1(T ), Z2 > h2(t)]− E [Zj | Ft, Z1 > h1(t), Z2 > h2(t)] (j = 1, 2)

or for τ2 ≤ t

Σ
(1|G)
tT = E [Z1 | Ft, Z1 > h1(T ), Z2]− E [Z1 | Ft, Z1 > h1(t), Z2] , and Σ

(2|G)
tT = 0.

As the function h1 is increasing, we have h1(T ) > h1(t) for T > t. Thus we have Σ
(j|G)
tT > 0 for T > t.

Here, in connection with the above considerations, we mention the signs of some processes.

Proposition 3.6. We have the following properties:

(i) For T > t, Σ
(i|G)
k:tT > 0 a.s. for i, k = 1, 2.

(ii) If ρ > 0 (resp. ρ < 0), then η
(i|G)
tT > 0 (resp. η

(i|G)
tT < 0) a.s. for i = 1, 2.

Proof. (i) It is proved for the case of i = 1 in the above discussion. The case of i = 2 can be proved by

a similar argument.

(ii) We prove only the case of i = 1 under the condition {τ1 > t, τ2 > t}. Setting

A(s) :=
ψt,2(h1(s), h2(t))

φt(h1(s), h2(t); 1)
s ≥ t

leads to η
(2|G)
tT = A(t)−A(T ) fot t < T . Then we see that η

(2|G)
tT > 0 is equivalent to the condition that

A(s) decreases with respect to s. The assertion is shown by calculating ∂
∂sA(s) directly for fixed ξ1 and

ξ2 to verify that ∂
∂sA(s) is dependent on the sign of ρ. □

We finish this section with a remark about the existence and uniqueness of solution of linear BSDE

with jumps like the one that appeared in Theorem 3.5.
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Remark 3.7. The existence and uniqueness of solution of linear BSDEs with jumps is discussed in

Quenez and Sulem (2013), for instance. In standard expression of the BSDE theory, the equation which

we achieve as the scalar-valued form (23) in Section 4 can be represented by D
(1)
TT = 1{τ1>T} and

−dD(1)
tT = −rtD(1)

t−,T dt−D
(1)
t−,T

¶
σ1Σ

(1|G)
tT dW

(1|G)
t + σ2Σ

(2|G)
tT dW

(2|G)
t

©
−D

(1)
t−,T

¶
−
Ä
d1{τ1≤t} − 1{τ1>t}λ

(1|G)
t dt

ä
−
Ä
1− Ξ

(2|G)
tT

ä Ä
d1{τ2≤t} − 1{τ2>t}λ

(2|G)
t dt

ä©
.

Strictly speaking, the solution of the BSDE should be given by a triplet of the defaultable discount

bond price process, the predictable processes of coefficient with respect to Brownian motions and the

compensated point processes, namely,(
D

(1)
tT ,
Ä
D

(1)
t−,Tσ1Σ

(1|G)
t−,T , D

(1)
t−,Tσ2Σ

(2|G)
t−,T

ä
,
Ä
−D(1)

t−,T ,−D
(1)
t−,T

Ä
1− Ξ

(2|G)
tT

ää )
,

where D
(1)
tT satisfies Pt,TE[1{τα>T}|Gt]. Note that the second component is a predictable version of the

processes (D
(1)
t−,Tσ1Σ

(1|G)
1:tT , D

(1)
t−,Tσ2Σ

(2|G)
1:tT ). In fact, this can be regarded as the unique solution of the

BSDE by applying a slight extension of the results in sections 2 and 3 of Quenez and Sulem (2013)

to the above BSDE, since the conditions on regularity and measurability of the processes appeared in

the above BSDE are consistent with the argument on linear BSDEs with jumps in Quenez and Sulem

(2013).

4. Proof of main Theorem

In this section, we prove Theorem 3.5. Due to the symmetry between the two bonds, we focus on

only the process {D(1)
tT }. For this end, we refer to the representation of D

(1)
tT given by (9) in Corollary

2.10 and introduce two families of {Gt}-adapted continuous processes parameterized by ui as follows.

F
(1|∅)
t,u1u2

:=

∫ ∞

h1(u1)

∫ ∞

h2(u2)

p0(z1, z2) exp

(
2∑

i=1

(
σiziξ

i
t −

1

2
σ2
i z

2
i t
))
dz1dz2 = φt(h1(u1), h2(u2); 1),(12)

F
(1|2)
t,u1

:=

∫ ∞

h1(u1)

p
(
z1 | h2(τ2)

)
exp
(
σ1z1ξ

1
t − 1

2
σ2
1z

2
1t
)
dz1 = φ̂t(h1(u1), h2(τ2); 1), τ2 ≤ t.(13)

Then, from (9) in Corollary 2.10, D
(1)
tT can be represented as

D
(1)
tT = D

(1)
tT 1{τ1>t} = PtT1{τ1>t,τ2>t}

F
(1|∅)
t,T t

F
(1|∅)
t,tt

+ PtT1{τ1>t,τ2≤t}
F

(1|2)
t,T

F
(1|2)
t,t

.(14)

4.1. The dynamics of 1{τ1>t,τ2≤t}D
(1)
tT . We first examine the second term in (14). From the integra-

tion by-parts formula for the product of the three processes PtT ,1{τ1>t,τ2≤t} and
F

(1|2)
t,T

F
(1|2)
t,t

, and the fact
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that all the bracket terms vanish, it follows that

d
(
PtT1{τ1>t,τ2≤t}

F
(1|2)
t,T

F
(1|2)
t,t

)
= rtPtT1{τ1>t,τ2≤t}

F
(1|2)
t,T

F
(1|2)
t,t

dt+ PtT

F
(1|2)
t,T

F
(1|2)
t,t

d1{τ1>t,τ2≤t}

+ PtT1{τ1>t,τ2≤t}d

(
F

(1|2)
t,T

F
(1|2)
t,t

)

= rtD
(1)
tT 1{τ1>t,τ2≤t}dt+ PtT

F
(1|2)
t,T

F
(1|2)
t,t

(
−1{τ2<t}d1{τ1≤t} + 1{τ1≥t}d1{τ2≤t}

)
+ PtT1{τ1>t,τ2≤t}d

(
F

(1|2)
t,T

F
(1|2)
t,t

)
.

The term d

Å
F

(1|2)
t,T

F
(1|2)
t,t

ã
can be seen as the stochastic differentiated form of the quotient of F

(1|2)
t,T and F

(1|2)
t,t ,

so the Ito formula implies that

PtT1{τ1>t,τ2≤t}d

(
F

(1|2)
t,T

F
(1|2)
t,t

)
(15)

= 1{τ1>t,τ2≤t}D
(1)
tT

[
dF

(1|2)
t,T

F
(1|2)
t,T

−
dF

(1|2)
t,t

F
(1|2)
t,t

+

(
dF

(1|2)
t,t

F
(1|2)
t,t

)2

−
d⟨F (1|2)

·,T , F
(1|2)
·,t ⟩t

F
(1|2)
t,T F

(1|2)
t,t

]
,

which motivates us to calculate the stochastic differential of (13) for u1 = T and u1 = t. It is easy to

see that

d

Å
exp

Å
σzξt −

1

2
σ2z2t

ãã
= exp

Å
σzξt −

1

2
σ2z2t

ã
σzdξt,

therefore, we have

dF
(1|2)
t,T =

∫ ∞

h1(T )

p(z1 | h2(τ2))
Ä
eσ1z1ξ

1
t− 1

2σ
2
1z

2
1t
ä
σ1z1dξ

1
t dz1

=

σ1

∫ ∞

h1(τ2)

p(z1 | h2(τ2))1{z1>h1(T )}z1e
σ1z1ξ

1
t− 1

2σ
2
1z

2
1tdξ1t dz1∫ ∞

h1(τ2)

p(z1 | h2(τ2))eσ1z1ξ
1
t− 1

2σ
2
1z

2
1tdz1

∫ ∞

h1(τ2)

p(z1 | h2(τ2))eσ1z1ξ
1
t− 1

2σ
2
1z

2
1tdz1

= σ1E
[
1{Z1>h1(T )}Z1

∣∣∣ξ1t , h2(τ2)]dξ1t ×
∫ ∞

h1(τ2)

p(z1 | h2(τ2))eσ1z1ξ
1
t− 1

2σ
2
1z

2
1tdz1.

The last equality is valid since it follows from the argument in the proof of Proposition 2.8 that

P(Z1 ∈ dz1 | ξ1t , h2(τ2)) =
1{z1>h1(τ2)}p(z1 | h2(τ2))

Ä
eσ1z1ξ

1
t− 1

2σ
2
1z

2
1t
ä
dz1∫ ∞

h1(τ2)

p(z1 | h2(τ2))eσ1z1ξ
1
t− 1

2σ
2
1z

2
1tdz1

.
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Then, we have

(16)
dF

(1|2)
t,T

F
(1|2)
t,T

= σ1
φ̂t(h1(T ), h2(τ2);Z1)

φ̂t(h1(T ), h2(τ2); 1)
dξ1t .

On the contrary, we have

dF
(1|2)
t,t =

∫ ∞

−∞
p(z1 | h2(τ2))d

(
1{h−1

1 (z1)>t}e
σ1z1ξ

1
t− 1

2σ
2
1z

2
1t
)
dz1

=

(
−E
[
δ{h−1

1 (Z1)−t} | ξ1t , h2(τ2)
]
dt + σ1E

[
1{h−1

1 (Z1)>t}Z1 | ξ1t , h2(τ2)
]
dξ1t

)

×
∫ ∞

h1(h
−1
2 (Z2))

p(z1 | h2(τ2))eσ1z1ξ
1
t− 1

2σ
2
1z

2
1tdz1.

Hence, we obtain

dF
(1|2)
t,t

F
(1|2)
t,t

= − ψ̂t,1(h1(t), h2(τ2))

φ̂t(h1(t), h2(τ2); 1)︸ ︷︷ ︸
=1{τ2<t}λ

(1|G)
t

dt+ σ1
φ̂t(h1(t), h2(τ2);Z1)

φ̂t(h1(t), h2(τ2); 1)
dξ1t .(17)

Substituting (16) and (17) for (15) and using d⟨ξ1, ξ1⟩t = dt from definition (2), we obtain

PtT1{τ1>t,τ2≤t}d
(F (1|2)

t,T

F
(1|2)
t,t

)

= 1{τ1>t,τ2≤t}D
(1)
tT

{
ψ̂(h1(t), h2(τ2))

φ̂t(h1(t), h2(τ2); 1)
dt

+ σ1

Å
φ̂t(h1(T ), h2(τ2);Z1)

φ̂t(h1(T ), h2(τ2); 1)
− φ̂t(h1(t), h2(τ2);Z1)

φ̂t(h1(t), h2(τ2); 1)

ã
︸ ︷︷ ︸

=Σ
(1|G)

1:tT

Å
dξ1t − σ1

φ̂t(h1(t), h2(τ2);Z1)

φ̂t(h1(t), h2(τ2); 1)
dt

ã}
.

From Proposition 2.5, the Markov property of {ξ1t }, σ(Z2) = σ(τ2) and the property that the event

{τ1 > t} is an atom of σ(τ1), it follows that

1{τ1>t,τ2≤t}
φt(h1(t);Z1)

φt(h1(t); 1)
= 1{τ1>t,τ2≤t}E[Z1 | ξ1t , h2(τ2), τ1 > t] = 1{τ1>t,τ2≤t}E[Z1 | Gt].

We remark that Proposition 3.1 implies

dW
(1|G)
t = dξ1t − σ11{τ1>t,τ2≤t}E[Z1|Gt]dt.
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Consequently, we can conclude that the second term of (14) satisfies

d

(
PtT1{τ1>t,τ2≤t}

F
(1|2)
t,T

F
(1|2)
t,t

)
(18)

= 1{τ1>t,τ2≤t}D
(1)
tT

{(
rt + λ

(1|G)
t

)
dt+ σ1Σ

(1|G)
tT dW

(1|G)
t

}

+ PtT

F
(1|2)
t,T

F
(1|2)
t,t

(
−1{τ2<t}d1{τ1≤t} + 1{τ1≥t}d1{τ2≤t}

)
= 1{τ1>t,τ2≤t}D

(1)
t−,T

{(
rt + λ

(1|G)
t

)
dt+ σ1Σ

(1|G)
tT dW

(1|G)
t − d1{τ1≤t}

}

+ 1{τ1≥t}PtT
φ̂t(h1(T ), h2(t); 1)

φ̂t(h1(t), h2(t); 1)
d1{τ2≤t}.

The last equality follows from the fact that for t = τ2, we have

F
(1|2)
t,T

F
(1|2)
t,t

∣∣∣∣
t=τ2

=
E
[
1{Z1>h1(T )} | ξ1t , Z2 = h2(t)

]
E
[
1{Z1>h1(t)} | ξ1t , Z2 = h2(t)

] ∣∣∣∣
t=τ2

=
φ̂t(h1(T ), h2(t); 1)

φ̂t(h1(t), h2(t); 1)

∣∣∣∣
t=τ2

.

4.2. The dynamics of 1{τ1>t,τ2>t}D
(1)
tT . Now, we focus on the first term of (14), in which case both

obligors are still active at time t. The idea of the proof is almost the same as that of the previous

subsection. First, we can show

d
(
PtT1{τ1>t,τ2>t}

F
(1|∅)
t,T t

F
(1|∅)
t,tt

)
= rtPtT1{τ1>t,τ2>t}

F
(1|∅)
t,T t

F
(1|∅)
t,tt

dt+ PtT

F
(1|∅)
t,T t

F
(1|∅)
t,tt

d1{τ1>t,τ2>t}

+ PtT1{τ1>t,τ2>t}d
(F (1|∅)

t,T t

F
(1|∅)
t,tt

)

= rtD
(1)
tT 1{τ1>t,τ2>t}dt+ PtT

F
(1|∅)
t,T t

F
(1|∅)
t,tt

(
−1{τ2≥t}d1{τ1≤t} − 1{τ1≥t}d1{τ2≤t}

)
+ PtT1{τ1>t,τ2>t}d

(F (1|∅)
t,T t

F
(1|∅)
t,tt

)
Moreover, the last term of the right-hand side can be represented as follows:

PtT1{τ1>t,τ2>t}d
(F (1|∅)

t,T t

F
(1|∅)
t,tt

)
(19)

= 1{τ1>t,τ2>t}D
(1)
tT

[
dF

(1|∅)
t,T t

F
(1|∅)
t,T t

−
dF

(1|∅)
t,tt

F
(1|∅)
t,tt

+

(
dF

(1|∅)
t,tt

F
(1|∅)
t,tt

)2

−
dF

(1|∅)
t,T t

F
(1|∅)
t,T t

dF
(1|∅)
t,tt

F
(1|∅)
t,tt

]
.
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Next, we can calculate the stochastic differential of (12) with u1 = T and u2 = t as

dF
(1|∅)
t,T t =

∫ ∞

−∞

∫ ∞

−∞
d
(
1{h−1

1 (z1)>T}1{h−1
2 (z2)>t}e

σ1z1ξ
1
t− 1

2σ
2
1z

2
1t · eσ2z2ξ

2
t− 1

2σ
2
2z

2
2t
)
p0(z1, z2)dz1dz2

=
{
−ψt,2(h1(T ), h2(t))dt+ σ1φt(h1(T ), h2(t);Z1)dξ

1
t + σ2φt(h1(T ), h2(t);Z2)dξ

2
t

}
×
∫ ∞

−∞

∫ ∞

−∞
p0(z1, z2)e

σ1z1ξ
1
t+σ2z2ξ

2
t− 1

2 (σ
2
1z

2
1+σ2

2z
2
2)tdz1dz2,

where we remember the prior joint distribution of (Z1, Z2) is given by

p0(z1, z2) =
1

2π
√
1− ρ2

exp
(
− 1

2(1− ρ2)
(z21 − 2ρz1z2 + z22)

)
.

Similarly, F
(1|∅)
t,T t can be given as

F
(1|∅)
t,T t = φt(h1(T ), h2(t); 1)×

∫ ∞

−∞

∫ ∞

−∞
p0(z1, z2)e

σ1z1ξ
1
t+σ2z2ξ

2
t− 1

2 (σ
2
1z

2
1+σ2

2z
2
2)tdz1dz2,

therefore, we have

dF
(1|∅)
t,T t

F
(1|∅)
t,T t

= − ψt,2(h1(T ), h2(t))

φt(h1(T ), h2(t); 1)
dt+ σ1

φt(h1(T ), h2(t);Z1)

φt(h1(T ), h2(t); 1)
dξ1t + σ2

φt(h1(T ), h2(t);Z2)

φt(h1(T ), h2(t); 1)
dξ2t .(20)

Then, we deal with
dF

(1|∅)
t,tt

F
(1|∅)
t,tt

. In the last case, we can calculate the stochastic differential of (12) with

u1 = u2 = t, such as

dF
(1|∅)
t,tt =

{
−ψt,1(h1(t), h2(t))dt− ψt,2(h1(t), h2(t))dt

+ σ1φt(h1(t), h2(t);Z1)dξ
1
t + σ2φt(h1(t), h2(t);Z2)dξ

2
t

}
×
∫ ∞

−∞

∫ ∞

−∞
p0(z1, z2)e

σ1z1ξ
1
t+σ2z2ξ

2
t− 1

2 (σ
2
1z

2
1+σ2

2z
2
2)tdz1dz2.

Therefore, we divide it F
(1|∅)
t,tt , given by

F
(1|∅)
t,tt = φt(h1(t), h2(t); 1)×

∫ ∞

−∞

∫ ∞

−∞
p0(z1, z2)e

σ1z1ξ
1
t+σ2z2ξ

2
t− 1

2 (σ
2
1z

2
1+σ2

2z
2
2)tdz1dz2,

to achieve

dF
(1|∅)
t,tt

F
(1|∅)
t,tt

= − ψt,1(h1(t), h2(t))

φt(h1(t), h2(t); 1)︸ ︷︷ ︸
=1{τ2>t}λ

(1|G)
t

dt − ψt,2(h1(t), h2(t))

φt(h1(t), h2(t); 1)
dt(21)

+ σ1
φt(h1(t), h2(t);Z1)

φt(h1(t), h2(t); 1)
dξ1t + σ2

φt(h1(t), h2(t);Z2)

φt(h1(t), h2(t); 1)
dξ2t .

The first and the second terms can be regarded as the conditional hazard rate of the obligors 1 and 2,

respectively; however, we must note that the condition with respect to obligor 1 in the second term is
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slightly different from that in (20). Thus, by substituting (20) and (21) into (19), we obtain

d
(
PtT1{τ1>t,τ2>t}

F
(1|∅)
t,T t

F
(1|∅)
t,tt

)
(22)

= 1{τ1>t,τ2>t}D
(1)
tT

{(
rt + λ

(1|G)
t + η

(2|G)
tT

)
dt + σ1Σ

(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t

}

− PtT

F
(1|∅)
t,T t

F
(1|∅)
t,tt

(
1{τ2≥t}d1{τ1≤t} + 1{τ1≥t}d1{τ2≤t}

)
= 1{τ1>t,τ2>t}D

(1)
t−,T

{(
rt + λ

(1|G)
t + η

(2|G)
tT

)
dt

+ σ1Σ
(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t − d1{τ1≤t}

}

− PtT
φt(h1(T ), h2(t); 1)

φt(h1(t), h2(t); 1)
1{τ1≥t}d1{τ2≤t}.

4.3. The dynamics of D
(1)
tT . Finally, we are now in a position to achieve the SDE for D

(1)
tT . Combining

(22) and (18), it immediately follows that

dD
(1)
tT = d

(
1{τ1>t,τ2>t}D

(1)
tT + 1{τ1>t,τ2≤t}D

(1)
tT

)

= D
(1)
t−,T

{
1{τ1>t,τ2>t}

[(
rt + λ

(1|G)
t + η

(2|G)
tT

)
dt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t − d1{τ1≤t}

]

+ 1{τ1>t,τ2≤t}

[(
rt + λ

(1|G)
t

)
dt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t − d1{τ1≤t}

] }

− 1{τ1≥t}PtT

Å
φt(h1(T ), h2(t); 1)

φt(h1(t), h2(t); 1)
− φ̂t(h1(T ), h2(t); 1)

φ̂t(h1(t), h2(t); 1)

ã
d1{τ2≤t}

= D
(1)
t−,T

{(
rt + λ

(1|G)
t + η

(2|G)
tT

)
dt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t − d1{τ1≤t}

}

− 1{τ1≥t}PtT

Å
φt(h1(T ), h2(t); 1)

φt(h1(t), h2(t); 1)
− φ̂t(h1(T ), h2(t); 1)

φ̂t(h1(t), h2(t); 1)

ã
d1{τ2≤t}.

Because we have from (14)

D
(1)
τ2−,T = 1{τ1≥τ2}Pτ2T

φτ2(h1(T ), h2(τ2); 1)

φτ2(h1(τ2), h2(τ2); 1)
,

we can obtain

1{τ1≥t}PtT

Å
φt(h1(T ), h2(t); 1)

φt(h1(t), h2(t); 1)
− φ̂t(h1(T ), h2(t); 1)

φ̂t(h1(t), h2(t); 1)

ã
d1{τ2≤t}

= D
(1)
t−,T

Å
1− φt(h1(t), h2(t); 1)

φt(h1(T ), h2(t); 1)

φ̂t(h1(T ), h2(t); 1)

φ̂t(h1(t), h2(t); 1)

ã
d1{τ2≤t} = D

(1)
t−,T

Ä
1− Ξ

(2|G)
tT

ä
d1{τ2≤t}.
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Substituting this jump term, we can conclude

dD
(1)
tT = D

(1)
t−,T

{(
rt + λ

(1|G)
t + η

(2|G)
1:tT

)
dt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t

− d1{τ1≤t} −
Ä
1− Ξ

(2|G)
1:tT

ä
d1{τ2≤t}

}
,

and furthermore, to represent the martingale terms explicitly in our stochastic differential equation,

dD
(1)
tT = D

(1)
t−,T

{
rtdt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t(23)

−
Ä
d1{τ1≤t} − 1{τ1>t}λ

(1|G)
t dt

ä
−
Ä
1− Ξ

(2|G)
1:tT

ä Ä
d1{τ2≤t} − 1{τ2>t}λ

(2|G)
t dt

ä}
.

The equation of D
(2)
tT can be obtained by interchanging the roles of obligors 1 and 2 likewise, and the

proof of the Theorem 3.5 is complete. Finally, we remark that the expression 1{τi>t}λ
(i|G)
t is appropriate

to represent clearly that the intensity λ
(i|G)
t vanishes after τi, however, we sometimes omit the indicator

process.

As for the first equation in Theorem 3.5, we should remark that on the set {τ2 > t},

η
(2|G)
tT =

ψt,2(h1(t), h2(t))

φt(h1(t), h2(t); 1)
− ψt,2(h1(T ), h2(t))

φt(h1(T ), h2(t); 1)

=
ψt,2(h1(t), h2(t))

φt(h1(t), h2(t); 1)

Å
1− φt(h1(t), h2(t); 1)

ψt,2(h1(t), h2(t))

ψt,2(h1(T ), h2(t))

φt(h1(T ), h2(t); 1)

ã
= λ

(2|G)
t

Å
1− φt(h1(t), h2(t); 1)

φt(h1(T ), h2(t); 1)

ψt,2(h1(T ), h2(t))

ψt,2(h1(t), h2(t))

ã
= λ

(2|G)
t

Å
1− φt(h1(t), h2(t); 1)

φt(h1(T ), h2(t); 1)

φ̂t,1(h1(T ), h2(t); 1)

φ̂t,1(h1(t), h2(t); 1)

ã
= λ

(2|G)
t

Ä
1− Ξ

(2|G)
tT

ä
.

The second last equality follows from

ψt,2(h1(T ), h2(t))

ψt,2(h1(t), h2(t))
=

P
(
Z1 > h1(T ), Z2 = h2(t) | ξ1t , ξ2t

)
P (Z1 > h1(t), Z2 = h2(t) | ξ1t , ξ2t )

=
P
(
Z1 > h1(T ) | ξ1t , ξ2t , Z2 = h2(t)

)
P
(
Z2 = h2(t) | ξ1t , ξ2t

)
P (Z1 > h1(t) | ξ1t , ξ2t , Z2 = h2(t))P (Z2 = h2(t) | ξ1t , ξ2t )

=
P
(
Z1 > h1(T ) | ξ1t , ξ2t , Z2 = h2(t)

)
P (Z1 > h1(t) | ξ1t , ξ2t , Z2 = h2(t))

=
P
(
Z1 > h1(T ) | ξ1t , Z2 = h2(t)

)
P (Z1 > h1(t) | ξ1t , Z2 = h2(t))

=
E
[
1{Z1>h1(T )} · 1 | ξ1t , Z2 = h2(t)

]
E
[
1{Z1>h1(t)} · 1 | ξ1t , Z2 = h2(t)

] =
φ̂t,1(h1(T ), h2(t); 1)

φ̂t,1(h1(t), h2(t); 1)
.

Similarly, the SDE of the defalutable bond price process {D(2)
tT } issued by obligor 2 can be obtained

by exchanging the roles between the two obligors. It is therefore of interest to examine the interaction
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between D
(1)
tT and D

(2)
tT . To be more specific,

1{τ1>t,τ2>t}Corr

(
dD

(1)
tT

D
(1)
t−,T

,
dD

(2)
tT

D
(2)
t−,T

)
= 1{τ1>t,τ2>t}

Ä
σ2
1Σ

(1|∅)
1:tT Σ

(1|∅)
2:tT + σ2

2Σ
(2|∅)
1:tT Σ

(2|∅)
2:tT

ä
,

with simplified notations such that

Σ
(1|∅)
2:tT :=

φt(h1(t), h2(T );Z1)

φt(h1(t), h2(T ); 1)
− φt(h1(t), h2(t);Z1)

φt(h1(t), h2(t); 1)
,

Σ
(2|∅)
2:tT :=

φt(h1(t), h2(T );Z2)

φt(h1(t), h2(T ); 1)
− φt(h1(t), h2(t);Z2)

φt(h1(t), h2(t); 1)
.

It is easy to see that Σ
(i|G)
k:tT is not dependent on ρ by verifying ∂

∂ρΣ
(i|G)
k:tT = 0. Besides the above covariation

part, the trend term of D
(1)
tT and D

(2)
tT interact with each other through the additional term η

(1|G)
tT and

η
(2|G)
tT .

5. Numerical illustrations

Now we recall from Theorem 3.5 that the trend term of one defaultable discount bond process {D(1)
tT }

contains not only its own hazard rate λ
(1|G)
t but also the quantity η

(2|G)
tT = λ

(2|G)
t (1−Ξ

(2|G)
tT ). Furthermore

we show in Proposition 3.6 that the sign of η
(2|G)
tT coincides with that of the correlation parameter ρ.

Thus, one question now arises: how are the counterpart’s contribution η
(2|G)
tT to the trend term and the

pseudo-recovery rate Ξ
(2|G)
tT induced by the default of obligor 2 related to the correlation parameter ρ?

In this section, though limited to some parameter sets, we investigate this question numerically.

Basically, we utilize the same structure of default times presented at the end of section 2, namely, we

assume that the default time is specified by τi = h−1
i (Zi) := − log

(
Φ(−Zi)

)
/λ̄i with λ̄1 = 0.02, λ̄2 =

0.05. For our numerical calculations, we fix t = 0.5 and T = 1 hereafter. Moreover, we assume no

default case, in short, τ1 > t and τ2 > t at a given time t, and simply η
(2|∅)
tT (resp. λ

(2|∅)
t ) denotes η

(2|G)
tT

(resp. λ
(2|G)
t ) for the no default case. Then we have:

η
(2|∅)
tT =

P
(
Z1 > h1(t), Z2 = h2(t)

∣∣ξ1t , ξ2t )
P
(
Z1 > h1(t), Z2 > h2(t)

∣∣ξ1t , ξ2t )︸ ︷︷ ︸
=λ

(2|∅)
t

−
P
(
Z1 > h1(T ), Z2 = h2(t)

∣∣ξ1t , ξ2t )
P
(
Z1 > h1(T ), Z2 > h2(t)

∣∣ξ1t , ξ2t )(24)

=

∫∞
h1(t)

e
− 1

2(1−ρ2)
(z2

1−2ρz1h2(t)+h2
2(t))eσ1z1ξ

1
t− 1

2σ
2
1z

2
1teσ2h2(t)ξ

2
t− 1

2σ
2
2h

2
2(t)tdz1∫∞

h1(t)

∫∞
h2(t)

e
− 1

2(1−ρ2)
(z2

1−2ρz1z2+z2
2)eσ1z1ξ1t−

1
2σ

2
1z

2
1teσ2z2ξ2t−

1
2σ

2
2z

2
2tdz1dz2

−

∫∞
h1(T )

e
− 1

2(1−ρ2)
(z2

1−2ρz1h2(t)+h2
2(t))eσ1z1ξ

1
t− 1

2σ
2
1z

2
1teσ2h2(t)ξ

2
t− 1

2σ
2
2h

2
2(t)tdz1∫∞

h1(T )

∫∞
h2(t)

e
− 1

2(1−ρ2)
(z2

1−2ρz1z2+z2
2)eσ1z1ξ1t−

1
2σ

2
1z

2
1teσ2z2ξ2t−

1
2σ

2
2z

2
2tdz1dz2

.
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Hence, the formula can be seen as a deterministic function of ρ, σ1, σ2, ξ
1
t (ω), ξ

2
t (ω) for preliminarily

fixed t = 0.5, and T = 1. With these results in mind, we illustrate the relation between correlation

ρ and obligor 2’s conditional hazard rate for no default case η
(2|∅)
tT (and pseudo-recovery rate Ξ

(2|G)
tT =

1 − η
(2|∅)
tT /λ

(2|∅)
t ) by numerically computing (24) for ρ ∈ [−0.9, 0.9] and for each ξ1t (ω) = 0.1, 0.3 and

0.5. Numerical integration is performed using MATLAB.

First, we assume σ1 = σ2 = 1, and ξ2t (ω) = 0 as a most-likely scenario. Figure 2 presents the

curves of η
(2|∅)
tT and Ξ

(2|G)
tT under the assumptions. If ρ < 0, η

(2|∅)
tT < 0, and vice versa, in a remarkably

nonlinear way. We observe that for ρ > 0, the larger ρ is, the larger η
(2|∅)
tT is. In contrast, in the case

Figure 2. Under the assumption of σ1 = σ2 = 1, and ξ2t (ω) = 0 as a most-likely sce-

nario, the curves of obligor 2’s hazard rate difference η
(2|∅)
tT (left panel) and the pseudo-

recovery rate Ξ
(2|∅)
tT (right panel) with the correlation parameter ρ = Corr(Z1, Z2) for

ξ1t = 0.1, 0.3 and 0.5.

of ρ < 0, it seems that there exists a lower bound. In addition, we can see that because the value ξ1t

of the information flow contributes to the bond price D
(1)
tT positively, η

(2|∅)
tT decreases its absolute value

as ξ1t (ω) increases. In contrast, the graph of Ξ
(2|G)
tT shows the fractional recovery of the market value

at which the bond price D
(1)
τ2−,T jumps to D

(1)
τ2,T

= Ξ
(1|∅)
τ2−,TD

(1)
τ2−,T due to the default of obligor 2. In

the case of ρ > 0, the larger ρ is, the larger the negative impact of the default is. However, a negative

correlation makes a relatively small positive impact to its market value.

Second, we consider the case where informational uncertainty is more than the previous case, that

is, the information flow rates σ1 and σ2 are less than those in the previous case. Figure 3 illustrates

the results for the case of σ1 = σ2 = 0.5, and ξ2t (ω) = 0. We notice that the absolute value of η
(2|∅)
tT

becomes larger than that of the previous case. In addition, the nonlinearity with respect to ρ remains.

In particular, for ρ > 0, one can see the fractional recovery of D
(1)
τ2,T

at default is lower than in the

previous case.
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Figure 3. Under the assumption of σ1 = σ2 = 0.5 and ξ2t (ω) = 0, the curves of obligor

2’s hazard rate difference η
(2|∅)
tT (left panel) and the pseudo-recovery rate Ξ

(2|∅)
tT (right

panel) with the correlation parameter ρ = Corr(Z1, Z2) for ξ
1
t = 0.1, 0.3 and 0.5.

Finally, we consider the case where the value of obligor 2’s market information process is negative

while the information flow rates σ1 and σ2 are the same as in the second case. Figure 4 illustrates the

results for the case of σ1 = σ2 = 0.5 and ξ2t (ω) = −0.5, which increases the absolute value of η
(2|∅)
tT in

comparison with the second case. We remark that ξ2t (ω) contributes positively to the bond price D
(1)
tT ;

therefore, the negative value of ξ2t (ω) leads to a lower bond price, hence, a wider trend term than the

second case. However, the shape of the curve Ξ
(2|∅)
tT is rarely different from the second case.

Figure 4. Under the assumption of σ1 = σ2 = 0.5, and ξ2t (ω) = −0.5, the curves of

obligor 2’s hazard rate difference η
(2|∅)
tT (left panel) and the pseudo-recovery rate Ξ

(2|∅)
tT

(right panel) with the correlation parameter ρ = Corr(Z1, Z2) for ξ
1
t = 0.1, 0.3 and 0.5.
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Furthermore, we display some sample paths of the hazard rate processes to illustrate sudden jumps

caused by the transfer from λ
(1|∅)
τ2− + η

(2|∅)
τ2−,T to λ

(1|2)
τ2 at time τ2. Obligor 1’s hazard rate after the default

of the counterpart is specified by

λ
(1|2)
t =

P
(
Z1 = h1(t)|ξ1t , τ2

)
P
(
Z1 > h1(t)|ξ1t , τ2

) =
e
− 1

2(1−ρ2)
(h1(t)−ρh2(τ2))

2

eσ1h1(t)ξ
1
t− 1

2σ
2
1h

2
1(t)t∫∞

h1(t)
e
− 1

2(1−ρ2)
(z1−ρh2(τ2))2eσ1z1ξ1t−

1
2σ

2
1z

2
1tdz1

.(25)

To numerically observe the impact of switching the default hazard rate before and after the default

of counterpart, we simulate the trajectory of λ
(1|∅)
t + η

(2|∅)
tT (before τ2) and λ

(1|2)
t (after τ2) with the

parameter set used in Figure 1 of Section 2.2 and the same assumption that obligor 2 defaults first at

fixed time τ2 = 0.5. The calculations are based on (24), (25) and

λ
(1|∅)
t =

P
(
Z1 = h1(t), Z2 > h2(t)|ξ1t , ξ2t

)
P
(
Z1 > h1(t), Z2 > h2(t)|ξ1t , ξ2t

)
=

∫∞
h2(t)

e
− 1

2(1−ρ2)
(h2

1(t)−2ρh1(t)z2+z2
2)eσ1h1(t)ξ

1
t− 1

2σ
2
1h

2
1(t)teσ2z2ξ

2
t− 1

2σ
2
2z

2
2tdz2∫∞

h1(t)

∫∞
h2(t)

e
− 1

2(1−ρ2)
(z2

1−2ρz1z2+z2
2)eσ1z1ξ1t−

1
2σ

2
1z

2
1teσ2z2ξ2t−

1
2σ

2
2z

2
2tdz1dz2

.

In Figure 5, we illustrate some simulated sample trajectories of {λ(1|∅)t +η
(2|∅)
tT }0≤t<τ2 and {λ(1|2)t }τ2≤t≤1

for the relatively high correlation case of ρ = 0.8 (left panel) and the moderate correlation case of ρ = 0.4

(right panel). Similar to Figure 1, we see that the size of the upward jump of the hazard process is

larger for the highly correlated case than for the moderately correlated case.

Figure 5. Simulated sample trajectories on the interval [0, 1] of obligor 1’s hazard

rate process that switches from λ
(1|∅)
t + η

(2|∅)
tT to λ

(1|2)
t at fixed default time τ2 = 0.5

of obligor 2. The case of ρ = 0.8 (left panel with vertical axis [0, 0.4]) and the case of
ρ = 0.4 (right panel with vertical axis [0, 0.1]).
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6. Conclusion

We construct the default contagion model for a more advanced pricing of defaultable financial se-

curities by extending the market information flow-based model proposed by Brody et al. (2010) to a

multi-name case. In our default contagion model, the default time of each obligor is specified by the

market factor associated with the obligor. The market factors are supposed to follow a multidimen-

sional correlated normal distribution. However, market factors cannot be observed through the market

unless the associated default happens; instead, we can utilize the obligors’ market information processes

specified by the market factors with independent Brownian noises until the associated default happens.

To evaluate the defaultable discount bonds under the model, we first obtain the conditional proba-

bilities of default times given the available information generated by the history of market information

processes of surviving obligors and the identified market factor of defaulted ones. In particular, we

obtain some explicit representations for the case of two correlated obligors. Then, as a main result,

we aim to derive the stochastic differential equation followed by one defaultable discount bond price

process.

We explicitly show the derived equation only for the case of two correlated obligors in the theorem to

avoid too complicated a representation. (Appendix mentions the case of three correlated obligors.) At

first glance, the dynamics and the components seem to be complicated, but we see that the dynamics

can be regarded as natural extensions of the previous models.

In one representation of the bond price dynamics, we notice that the time trend term of the bond

price, before the counterpart obligor’s default, includes the counterpart obligor’s hazard rate adjusted

with the “pseudo-default loss” rate as well as the issuer’s hazard rate. In addition, the bond price

can jump at the counterpart obligor’s default time since the available information for pricing is largely

updated by revealing the latent market factor of the counterpart, although the bond does not default

due to the counterpart obligor’s default.

The other representation is consistent with the martingale-based methods for credit risk modeling.

Specifically, such a representation reveals that the defaultable bond price process is driven continuously

by Brownian motions derived from both obligors’ market information processes and can be jumped due

to the martingales, defined as the default indicator processes compensated with the default intensity

process.

If it happens before the maturity or the issuer’s default, the stochastic drivers of defaultable bond

price dynamics and the components, such as the issuer’s hazard rate and volatility, are different before

and after the counterpart obligor’s default. Since the market factor of the counterpart is cleared at the



DEFAULT CONTAGION MODEL FROM INFORMATION BASED PERSPECTIVE 33

very moment of the counterpart’s default, what generates the available information is transferred and

improved from the market information flows of both issuers to that of the surviving issuer and the true

value of the market factor for the defaulted counterpart.

Finally, we conduct calculations because it is useful to visually determine the quantitative effects of

counterpart obligors’ default on the model components of the issuer. Indeed, we present some numerical

illustrations for visualizing the theoretical consequence on the relation between the conditional default

intensities and the market factor correlation parameter as well as the upward impact of counterpart

obligors’ default on the issuer’s hazard rate. Concurrently, we can show that our model is tractable for

numerical works. However, there are still issues for the practical use of our model, and we will make

them assignments for future research.
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Appendix

In this appendix, we summarize some results for the n = 3 case of Theorem 3.5. Using the generalized

Dellacherie formula shown in Proposition 2.5, the defaultable discount bond price of obligor 1 is given

by

D
(1)
t,T = Pt,T

{
1{τ1>t,τ2>t,τ3>t}

P(τ1 > T, τ2 > t, τ3 > t | ξ1t , ξ2t , ξ3t )
P(τ1 > t, τ2 > t, τ3 > t | ξ1t , ξ2t , ξ3t )

+ 1{τ1>t,τ2≤t,τ3>t}
P(τ1 > T, τ2 ≤ t, τ3 > t | ξ1t , Z2, ξ

3
t )

P(τ1 > t, τ2 ≤ t, τ3 > t | ξ1t , Z2, ξ3t )

+ 1{τ1>t,τ2>t,τ3≤t}
P(τ1 > T, τ2 > t, τ3 ≤ t | ξ1t , ξ2t , Z3)

P(τ1 > t, τ2 > t, τ3 ≤ t | ξ1t , ξ2t , Z3)

+ 1{τ1>t,τ2≤t,τ3≤t}
P(τ1 > T, τ2 ≤ t, τ3 ≤ t | ξ1t , Z2, Z3)

P(τ1 > t, τ2 ≤ t, τ3 ≤ t | ξ1t , Z2, Z3)

}
.
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From some calculations similar to those in Section 4, one sees that

1{τ1>t}dD
(1)
tT = d

(
1{τ1>t,τ2>t,τ3>t}D

(1)
tT + 1{τ1>t,τ2≤t,τ3>t}D

(1)
tT + 1{τ1>t,τ2>t,τ3≤t}D

(1)
tT + 1{τ1>t,τ2≤t,τ3≤t}D

(1)
tT

)

= D
(1)
t−,T

{
1{τ1>t,τ2>t,τ3>t}

[(
rt + λ

(1|G)
t + η

(2|G)
1:tT + η

(3|G)
1:tT

)
dt

+ σ1Σ
(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t + σ3Σ

(3|G)
1:tT dW

(3|G)
t − d1{τ1≤t}

]

+ 1{τ1>t,τ2≤t,τ3>t}

[(
rt + λ

(1|G)
t + η

(3|G)
1:tT

)
dt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t + σ3Σ

(3|G)
1:tT dW

(3|G)
t − d1{τ1≤t}

]

+ 1{τ1>t,τ2>t,τ3≤t}

[(
rt + λ

(1|G)
t + η

(2|G)
1:tT

)
dt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t + σ2Σ

(2|G)
1:tT dW

(2|G)
t − d1{τ1≤t}

]

+ 1{τ1>t,τ2≤t,τ3≤t}

[(
rt + λ

(1|G)
t

)
dt+ σ1Σ

(1|G)
1:tT dW

(1|G)
t − d1{τ1≤t}

] }

− 1{τ1≥t,τ3≥t}PtT

Ç
φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)
−
φt,{1,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,3}(h1(t), h2(t), h3(t); 1)

å
d1{τ2≤t}

− 1{τ1≥t,τ2≥t}PtT

Ç
φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)
−
φt,{1,2}(h1(T ), h2(t), h3(t); 1)

φt,{1,2}(h1(t), h2(t), h3(t); 1)

å
d1{τ3≤t}

− 1{τ1≥t,τ3≤t}PtT

Ç
φt,{1,2}(h1(T ), h2(t), h3(τ3); 1)

φt,{1,2}(h1(t), h2(t), h3(τ3); 1)
−
φt,{1}(h1(T ), h2(t), h3(τ3); 1)

φt,{1}(h1(t), h2(t), h3(τ3); 1)

å
d1{τ2≤t}

− 1{τ1≥t,τ2≤t}PtT

Ç
φt,{1,3}(h1(T ), h2(τ2), h3(t); 1)

φt,{1,3}(h1(t), h2(τ2), h3(t); 1)
−
φt,{1}(h1(T ), h2(τ2), h3(t); 1)

φt,{1}(h1(t), h2(τ2), h3(t); 1)

å
d1{τ3≤t},

where

λ
(1|G)
t := 1{τ2>t,τ3>t}

ψt,1,{1,2,3}(h1(t), h2(t), h3(t))

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)
+ 1{τ2≤t,τ3>t}

ψt,1,{1,3}(h1(t), h2(τ2), h3(t))

φt,{1,3}(h1(t), h2(τ2), h3(t); 1)

+ 1{τ2>t,τ3≤t}
ψt,1,{1,2}(h1(t), h2(t), h3(τ3))

φt,{1,2}(h1(t), h2(t), h3(τ3); 1)
+ 1{τ2≤t,τ3≤t}

ψt,1,{1}(h1(t), h2(τ2), h3(τ3))

φt,{1}(h1(t), h2(τ2), h3(τ3); 1)
,

is the hazard rate of the issuer (obligor 1), which is dependent on the global filtration G = (Gt)t≥0,

η
(i|G)
1:tT := 1{τ2>t,τ3>t}

( ψt,i,{1,2,3}(h1(t), h2(t), h3(t))

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)
−

ψt,i,{1,2,3}(h1(T ), h2(t), h3(t))

φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)

)
+ 1{τ2≤t,τ3>t}

( ψt,i,{1,3}(h1(t), h2(τ2), h3(t))

φt,{1,3}(h1(t), h2(τ2), h3(t); 1)
−

ψt,i,{1,3}(h1(T ), h2(τ2), h3(t))

φt,{1,3}(h1(T ), h2(τ2), h3(t); 1)

)
·1{i ̸=2}

+ 1{τ2>t,τ3≤t}

( ψt,i,{1,2}(h1(t), h2(t), h3(τ3))

φt,{1,2}(h1(t), h2(t), h3(τ3); 1)
−

ψt,i,{1,2}(h1(T ), h2(t), h3(τ3))

φt,{1,2}(h1(T ), h2(t), h3(τ3); 1)

)
·1{i ̸=3},

is the hazard rate adjusted with the pseudo-default loss for obligor i (i = 2 or 3), and the fucntions

φt,J and ψt,i,J are given in (10) and (11), respectively.
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Moreover, the volatility components Σ
(i|G)
1:tT (i = 1, 2, 3), which are also dependent on global filtration,

are defined as

Σ
(i|G)
1:tT := 1{τ2>t,τ3>t}

Ç
φt,{1,2,3}(h1(T ), h2(t), h3(t);Zi)

φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)
−
φt,{1,2,3}(h1(t), h2(t), h3(t);Zi)

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)

å
+ 1{τ2≤t,τ3>t}

Ç
φt,{1,3}(h1(T ), h2(τ2), h3(t);Zi)

φt,{1,3}(h1(T ), h2(τ2), h3(t); 1)
−
φt,{1,3}(h1(t), h2(τ2), h3(t);Zi)

φt,{1,3}(h1(t), h3(τ2), h3(t); 1)

å
· 1{i ̸=2}

+ 1{τ2>t,τ3≤t}

Ç
φt,{1,2}(h1(T ), h2(t), h3(τ3);Zi)

φt,{1,2}(h1(T ), h2(t), h3(τ3); 1)
−
φt,{1,2}(h1(t), h2(t), h3(τ3);Zi)

φt,{1,2}(h1(t), h2(t), h3(τ3); 1)

å
· 1{i ̸=3}

+ 1{τ2≤t,τ3≤t}

Ç
φt,{1}(h1(T ), h2(τ2), h3(τ3);Z1)

φt,{1}(h1(T ), h2(τ2), h3(τ3); 1)
−
φt,{1}(h1(t), h2(τ2), h3(τ3);Z1)

φt,{1}(h1(t), h2(τ2), h3(τ3); 1)

å
· 1{i=1}.

Thus, it follows from the second and the third line of the above that it does not necessarily sat-

isfy 1{τ2≤t<τ3}Σ
(1|G)
1:tT = 1{τ3≤t<τ2}Σ

(1|G)
1:tT because the order of defaults is different, while the equality

1{τ2<τ3≤t<τ1}Σ
(1|G)
1:tT = 1{τ3<τ2≤t<τ1}Σ

(1|G)
1:tT holds true.

Finally we can wrap up the continuous part and then rewrite the jump part as follows:

1{τ1>t}dD
(1)
tT = D

(1)
t−,T

{ (
rt + λ

(1|G)
t + 1{τ2>t}η

(2|G)
tT + 1{τ3>t}η

(3|G)
tT

)
dt

+ σ1Σ
(1|G)
1:tT dW

(1|G)
t + 1{τ2>t}σ2Σ

(2|G)
1:tT dW

(2|G)
t + 1{τ3>t}σ3Σ

(3|G)
1:tT dW

(3|G)
t − d1{τ1≤t}

−

(
1−

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)

φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,3}(h1(t), h2(t), h3(t); 1)︸ ︷︷ ︸
Ξ

(2|∅)
1:tT

)
d1{τ2≤t}

−

(
1−

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)

φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,2}(h1(T ), h2(t), h3(t); 1)

φt,{1,2}(h1(t), h2(t), h3(t); 1)︸ ︷︷ ︸
Ξ

(3|∅)
1:tT

)
d1{τ3≤t}

−

(
1−

φt,{1,2}(h1(t), h2(t), h3(τ3); 1)

φt,{1,2}(h1(T ), h2(t), h3(τ3); 1)

φt,{1}(h1(T ), h2(t), h3(τ3); 1)

φt,{1}(h1(t), h2(t), h3(τ3); 1)︸ ︷︷ ︸
Ξ

(2|3)
1:tT

)
d1{τ2≤t}

−

(
1−

φt,{1,3}(h1(t), h2(τ2), h3(t); 1)

φt,{1,3}(h1(T ), h2(τ2), h3(t); 1)

φt,{1}(h1(T ), h2(τ2), h3(t); 1)

φt,{1}(h1(t), h2(τ2), h3(t); 1)︸ ︷︷ ︸
Ξ

(3|2)
1:tT

)
d1{τ3≤t}

}
.
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Here, we set the pseudo-recovery rate of the pre-default market value as Ξ
(2|∅)
1:tT , Ξ

(3|∅)
1:tT , Ξ

(2|3)
1:tT and Ξ

(3|2)
1:tT

depending on the default history. These are redefined with consistent notation Ξ
(i|G)
1:tT as follows:

Ξ
(2|G)
1:tT := 1{τ2>t,τ3>t}

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)

φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,3}(h1(t), h2(t), h3(t); 1)

+ 1{τ2>t,τ3≤t}
φt,{1,2}(h1(t), h2(t), h3(τ3); 1)

φt,{1,2}(h1(T ), h2(t), h3(τ3); 1)

φt,{1}(h1(T ), h2(t), h3(τ3); 1)

φt,{1}(h1(t), h2(t), h3(τ3); 1)
,

Ξ
(3|G)
1:tT := 1{τ2>t,τ3>t}

φt,{1,2,3}(h1(t), h2(t), h3(t); 1)

φt,{1,2,3}(h1(T ), h2(t), h3(t); 1)

φt,{1,2}(h1(T ), h2(t), h3(t); 1)

φt,{1,2}(h1(t), h2(t), h3(t); 1)

+ 1{τ2≤t,τ3>t}
φt,{1,3}(h1(t), h2(τ2), h3(t); 1)

φt,{1,3}(h1(T ), h2(τ2), h3(t); 1)

φt,{1}(h1(T ), h2(τ2), h3(t); 1)

φt,{1}(h1(t), h2(τ2), h3(t); 1)
.

Consequently, we conclude that the stochastic differential equation of the defaultable zero-coupon dis-

count bond issued by obligor 1 for n = 3 case is given by

dD
(1)
tT = D

(1)
t−,T

{ (
rt + λ

(1|G)
t + 1{τ2>t}η

(2|G)
tT + 1{τ3>t}η

(3|G)
tT

)
dt

+ σ1Σ
(1|G)
1:tT dW

(1|G)
t + 1{τ2>t}σ2Σ

(2|G)
1:tT dW

(2|G)
t + 1{τ3>t}σ3Σ

(3|G)
1:tT dW

(3|G)
t

− d1{τ1≤t} −
Ä
1− Ξ

(2|G)
1:tT

ä
d1{τ2≤t} −

Ä
1− Ξ

(3|G)
1:tT

ä
d1{τ3≤t}

}
,

with D
(1)
TT = 1{τ1>T}.
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Schönbucher, P. J., and Schubert, D. (2001). Copula-dependent defaults in intensity models. Preprint

at ETH Zurich and Universität Bonn, available at https://ssrn.com/abstract=301968.

Yu, F. (2007). Correlated defaults in intensity-based models. Mathematical Finance 17(2), 155-173.

Yu, F. and Rutkowski, M. (2007). An Extension of the Brody-Hughston-Macrina Approach to Modeling

of Defaultable Bonds. International Journal of Theoretical and Applied Finance 10(3), 557-589.

Zheng, H., and Jiang, L. (2009). Basket CDS pricing with interacting intensities. Finance and Stochastics

13, 445-469.


