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Abstract

We propose a commodity pricing model that extends the Gibson—
Schwartz two-factor model to incorporate the effect of linear relations
among commodity spot prices and to show the conditions under which
the prices are cointegrated. We derive futures and call option prices
for the proposed model and indicate that, unlike in Duan and Pliska
(2004), the linear relations among commodity prices should affect
commodity derivative prices, even when the volatilities of commod-
ity returns are constant. Using crude oil and heating oil market data,
we estimate the model and apply the results to the hedging of long-
term futures using short-term ones. We also discuss the relationships
among futures prices implied by the proposed model, as well as a
possible generalization with multilinear relations and seasonality.
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1 Introduction

Economies are full of equilibrium relations and comovements. These include,
for example, purchasing power parity, covered or uncovered interest rate par-
ity, spot—forward relations, money demand equations, consumption spending,
and relations among commodity prices. Although these relations are widely
known, they do not seem to be adequately utilized in finance, especially in
the area of derivative valuations.

These relations have been modeled using cointegration techniques, which
were first implicitly used by Davidson, Hendry, Srba, and Yeo (1978) and
later established by Engle and Granger (1987). Cointegration refers to a
property that holds between two or more nonstationary time series variables.
That is, if certain linear combinations of several nonstationary variables are
stationary, these variables are said to be cointegrated. Cointegration is inter-
preted as a long-term relationship or an equilibrium between variables. This
is because cointegrated variables are tied to each other to keep certain linear
combinations stationary, and hence they tend to move together. Thus, it is
natural to consider whether and how such comovements among cointegrated
variables affect the prices of their derivatives.

Although academic papers that analyze cointegration relationships among
economic variables are plentiful, research on derivative pricing using cointe-
gration is limited. To the best of our knowledge, Duan and Pliska (2004) were
the first to use cointegration in examining derivative pricing. They focused
on stocks and priced their options under an assumption termed the local
risk-neutral valuation relationship, which by definition implies that the drift
terms of stock returns are equal to the risk-free rate under the risk-neutral
probability. In this setting, they concluded that cointegration affects option
prices only when volatilities are stochastic.

Commodity prices, however, behave differently from stock prices. They
are strongly affected by production and inventory conditions, and tend to
deviate temporarily from the prices that would exist without those effects.
These characteristics were recognized from the theory of storage by Kaldor
(1939) and Working (1949). To incorporate such temporary deviations, the
concept of convenience yield was introduced, which is a crucial element in
commodity pricing models. For example, Gibson and Schwartz (1990, 1993)
proposed a two-factor model with commodity spot prices and mean revert-
ing convenience yields, and priced commodity futures and options. Schwartz
(1997) investigated three different (one-, two-, and three-factor) models in-



cluding the Gibson—Schwartz two-factor model, using data for crude oil, gold,
and copper prices, and analyzed their long-term hedging strategies. Schwartz
and Smith (2000) modeled commodity dynamics in a different setting using
long- and short-term factors and found that their model was equivalent to the
Gibson—Schwartz model. Many other models have generalized the above, in-
cluding those of Miltersen and Schwartz (1998), Nielsen and Schwartz (2004),
and Casassus and Collin-Dufresne (2005).

When a convenience yield exists, the drift in commodity prices may de-
viate from the risk-free rate even under risk-neutral probability. Thus, in
standard commodity pricing models, Duan and Pliska’s (2004) risk-neutral
valuation framework does not hold, and their results cannot be directly ap-
plied to commodity derivative pricing. This is why we need to extend Duan
and Pliska’s (2004) framework and investigate commodity pricing using coin-
tegration or, more generally, linear relations among the logarithms of com-
modity prices.

For this purpose, we generalize the Gibson—Schwartz two-factor model by
explicitly incorporating linear relations among commodity prices, which in-
cludes cointegration under certain conditions. More specifically, we formulate
a commodity pricing model in which the temporary deviation of drift terms
from the risk-free rate under a risk-neutral probability is described by conve-
nience yields and linear relations among commodity prices, which correspond
to error correction terms under appropriate conditions. In previous studies,
such temporary deviations were modeled using only the convenience yield;
therefore, this paper also can be regarded as proposing a model that specifies
a part of the temporary deviation of commodity prices by their cointegrating
relationship.

Intuitively, we can expect that relations among commodity prices should
characterize part of the deviation for the following reason. As explained, in
standard commodity pricing models, drifts in commodity returns may devi-
ate from the risk-free rate. Such deviations are thought to occur because of
frictions (e.g. nonnegative constraints and/or transaction costs) in commod-
ity trading. However, if the deviation occurs because of such frictions, then
temporary deviations from the long-term relation among commodity prices
may not dissolve immediately, either. Consequently, the relations among
commodity prices may affect the deviation in addition to “convenience.”

It is important to note that several previous studies on commodities in-
corporated linear relations among prices, or cointegration, into their pricing
models. Dempster, Medova, and Tang (2008) analyzed spread options on



two commodity prices, assuming that the spread was stationary. However,
they did not explicitly model the spot prices, instead directly modeling the
spread. This approach simplified their model, but it does not enable us to
value futures and options on each commodity, whose prices are cointegrated.

Cortazar, Milla, and Severino (2008) developed a general multicommod-
ity model in which prices of commodities share a set of common factors,
through which movements of different commodity prices are related. Such a
relation among commodity prices should then provide useful information for
describing the movement of each commodity price more accurately. Using
data on WTT oil and Brent oil and data on WTT oil and gasoline, Cortazar et
al. (2008) assessed multicommodity models and found them to be superior
to traditional individual-commodity models.

Based on a similar idea, Paschke and Prokopczuk (2009) also developed
a general and tractable multifactor model in which commodity spot prices
are characterized by the weighted sum of latent factors. Using NYMEX data
for crude oil, heating oil, and gasoline, and unlike Cortazar et al. (2008),
they estimated the model simultaneously with three different commodities,
and identified the latent factors that jointly characterized those commodity
prices.

Adopting a different approach, Casassus, Liu, and Tang (2009) modeled
long-term relationships among commodity prices using an intuition that is
essentially the same as cointegration. They estimated their model using
market data for spread options and compared their results with existing
models.

This paper adopts the same approach as those papers, but focuses on a dif-
ferent aspect of commodity price dependencies. Moreover, this paper derives
the condition for cointegration, which is not discussed in the abovementioned
papers. In the following, we investigate the effect of linear relations among
spot prices on commodity derivative pricing for which Duan and Pliska’s
(2004) risk-neutral valuation does not hold. More precisely, based on Duan
and Pliska’s (2004) framework, we formulate the Gibson—Schwartz two-factor
model with linear relations among commodity spot prices, or cointegration,
under certain conditions. We obtain an analytical formula for commodity
futures and options prices, and then investigate empirically the effect of such
spot price relationships on derivative prices using crude oil and heating oil
data from NYMEX. The results suggest that the linear relation between
crude oil and heating oil prices partly explains the deviation of drifts in their
returns from the risk-free rate, and hence affects their derivative prices.



The rest of this paper is organized as follows. In Section 2, we model
commodity spot prices and convenience yields using linear relations among
the logarithms of commodity prices with an error correction term in the drift
of spot prices. We also investigate the relationship between our model and
the Gibson—Schwartz model, and derive the closed-form pricing formulae
of futures and call options. In Section 3, we show the state equation and
observation equation for the Kalman filter, and conduct an empirical analysis
using crude oil and heating oil data. Section 4 discusses the results and
Section 5 concludes.

2 The Model

2.1 Gibson—Schwartz Two-Factor with Cointegration
(GSC) Model

We propose a model that extends the Gibson—Schwartz two-factor model
(hereafter, the GS model; Gibson and Schwartz, 1990; Schwartz, 1997) to
explicitly incorporate linear relations among commodity prices, or cointegra-
tion, under certain conditions. We adopt the continuous-time specification
of cointegrated systems shown by Duan and Pliska (2004)." As usual in com-
modity pricing models, we start by describing the behavior of spot prices and
convenience yields under the risk-neutral probability.

Assume that there are n commodities whose spot prices and convenience
yields under the risk-neutral probability are as follows:?

2

dIn Sz(t) = <’I“ - Ugi - (Sl(t) + blZ(t)) dt + O—SidWSi(t) (1)

Here, r is the risk-free interest rate, which is assumed to be constant. b;, og,,
K;, @i, and o5, are constant coefficients. W (t) = [Ws, (¢), ..., W, (t), Ws, (£), ..., W5, ()]

'Duan and Pliska (2004) considered stock prices where d;(t) = 0 (no convenience yield
for stocks), and showed that the diffusion limit of discrete stock price processes with
cointegration among their log prices In.S;(t) is given by dS;(t) = Si(t)(r+Xios, +b;z(t))dt+
Si(t)os, dWE (t) under the natural probability where A; is the market price of risk.

2In Subsection 5.2, we discuss how we can enhance our model to incorporate seasonality.



is a 2n-dimensional Brownian motion under the risk-neutral probability with
dWSi (t) dWS’j (t) = psigj dt, dWS’l (t)dW(gj (t) = pgi(;j dt, dW(gl (t) dW(;j (t) = p(gi(;j dt
,7=1,...,n.
We assume that the commodity prices are related linearly through
2(t) = po +agt + Y a;In S(t), (3)
i=1

where 1, ag, and a;s are constants. If In S; are cointegrated, then by rear-

ranging the equation as In S(t) = (—p, —aot — >, a; In S;(t) + z(t)) /ay, if

a; # 0, z(t) can be interpreted as an error correction term, a; as cointegra-
tion vectors, and b; as adjustment speeds of the error correction term. Using

[to’s lemma, the dynamics of z(t) is

dz(t) = apdt+ Y a;dInS;(t)
=1

= (ao + zn: a;r — % zn: az-agi — zn: ai5i(t) + Xn: alblz(t)> dt
i=1 i=1 i=1 =1
+ Z a;0g; dI/VSz (t) (4)
=1

Define b = >, b;a;. If b # 0, the above equation can be written as

de(t) = —b(m—2(t))dt =Y adi(t)dt + Y aios,dWs,(t)  (5)
=1 i=1
—ap — Y iy air + % D aiagi
m = b .

The set of equations (1), (2), and (3) is an extension of the GS model
with a linear relation z(#) among the logarithms of commodity prices that
affects the drift terms. z(t) represents the error correction term of the coin-
tegrating relationship among commodity prices.> We call this model the
Gibson—Schwartz two-factor with cointegration model (hereafter the GSC
model).

3In Subsection 2.3, we show a sufficient condition for cointegration.



It is worth mentioning that while the GSC model bases its specification
on Duan and Pliska (2004), the drift term is different from that of Duan
and Pliska (2004), in which the drift is equal to the risk-free rate under the
risk-neutral probability. This difference comes from the characteristics of
the underlying assets. For stocks, which Duan and Pliska (2004) focused
on, it is natural to assume that the drift terms of returns should be equal
to the risk-free rate under the risk-neutral probability. On the other hand,
for commodities, it is standard to assume that the drift terms may deviate
temporarily from the risk-free rate even under the risk-neutral probability
by reflecting inventory and production conditions. The GSC model assumes
that such deviations are described by the convenience yield and the term

z(t).*

2.2 Futures and Option Prices for the GSC Model

We derive the futures and European call option prices on commodity ¢ in
matrix form.

2
os.
2

- (Sl(t) + bl,uz + bia()t + Z biaj In Sj (t)) dt + O-SidWSi (t)

dInS;(t) = (r -
j=1
= (5&-0@) + Bs.a,0i(t) + > Bs,s, IS, (ﬂ) dt + 05,dWs,(¢)
j=1
doi(t) = (Bso + Bs,5,0i(t))dt + 05,dWs, (1),

where

ol
Bso(t) =1 — + bift, + biagt

2
Bs;s; = bia;
Bsis; = —1
Bs;0 = Kicy;
Bs.6; = —FKi

4See Section 1 for the intuition behind including the linear relation z(t) in the drift
terms.



This equation can be solved as follows.?
T T
X(T) = TP {X(t) + / e PB,(s)ds + / esBdWO(s)} , (6)
t t
where

X(t) = [ln Sl(t)7 e 71n Sn(t)a 61(t)7 T 75n(t)]T
Bo(t) = [Bsio(t), -+, Bs,o(t), Bsios -+ » Bsol |

[ Bsisi v+ Bsis. Bsia 0
Bsyo1 0
L 0 Bs,5,

and W(t) = [0, Ws, (t),- -+ ,05, W, (t), 05 Ws, (t),- -, 05, W;, (t)] is a scaled
Brownian motion vector.

Denote by E[-] the expectation under the risk-neutral probability. The
mean and covariances of In S;(7T’) are

px(t.T) = EifnS(T)]

= e(Tt)B{X(t) + /T esﬂﬂo(s)ds}]
OX;X; (tv T) = ét[(ln Sl(T) — HX; (tv T))(ln Sj (T) - /L); (ta T))]

— /T(e(T—t—s)ﬁ)Q(Q(T—t—s)B)TdS] ,

ij

where []; and [-];; are the ith vector element and the [z, j]th matrix element,

>Cf. Karatzas and Shreve (1991), Section 5.6 or Liptser and Shiryaev (2001), p. 151,
Thm. 4.10.



respectively, and the covariance matrix is

PS$15108,08, ~*° P$15,0508, Ps10505 0 PS16,08.04,
0= P5,5,05,08, ' P8,5,95,05, P5,6195,06, " P8,6,95,00,
P6,5,06,05, ***  P§;5,06,08,  P6,6106,06, "  P6:6,96,06,

- p5n510—6n0—51 e pénsno—(sno—sn p(sn(slo—éno—(sl T pénéno—(sno—én -

Using risk neutrality and properties of a moment generating function, we
obtain the futures price of commodity i as follows (cf. Cox, Ingersoll, and
Ross, 1981).

Proposition 2.1. Assuming (1), (2), and (3), the futures price of commodity
t with maturity T at t is given by

Gi(t,T) = E|S:i(T)]

o% (t, T
= €xp {,U/Xz(taT) + %}7

where 0%, (t,T) = ox,x,(t,T).

Note that there is In S;(¢) in px,(t,7) implicitly, so S;(t) do not appear
in the formula.

In the following proposition, we derive the call option pricing formula.
This is not addressed by other papers that incorporate multicommodity
prices, such as Cortazar et al. (2008), Paschke and Prokopczuk (2009), and
Casassus et al. (2009).

Proposition 2.2. Assuming (1), (2), and (3), the European call option price
of commodity i with maturity T at t is given by

Gi(t,T) = e"TVE[(S(T) ~ K)*]

o%, (6T

=r(T=t)+px,; (tT)+

(I)(dzl (t, T)) — K€_T(T_t)q)(di2(t,T))
—InK + Hx; (ta T) + O—g(i (ta T)

X, (t, T)
di2 (t, T) = dil (t, T) —O0x; (t, T)

= €
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Proof. See the Appendix for the derivation. O

In the Appendix, we elaborate the formulae of the derivatives without
using integrals or matrices. These formulae are more tractable than the
matrix formulae in this subsection for calculating the hedge weights and
applying them to risk management.

2.3 A Sufficient Condition for Cointegration

We now show a sufficient condition for the GSC model to be cointegrated.

Proposition 2.3. Let us assume e?®! < 1( <= b < 0),e "8 < 1( <=
ki > 0). Then, the GSC model is cointegrated.

Proof. In the Appendix. O

This condition is very important for the estimated parameters in the
model to be valid. If the condition of Proposition 2.3 does not hold, the
estimation of the model may lead to a spurious regression. The estimated
coefficients in this case are not consistent and the sample residual of z(t)
will be nonstationary.® This condition is similar to that of Duan and Pliska
(2004). However, because our setting is different from their model, we cannot
simply apply their results. In particular, convenience yields are unobservable
in our model.” Therefore, we need a different condition for cointegration for
our model. To our knowledge, among the papers that deal with relations
among commodity prices, including Cortazar et al. (2008), Paschke and
Prokopczuk (2009), and Casassus et al. (2009), ours is the first to show a
sufficient condition for cointegration.

6See Hamilton (1994) for the properties of spurious regressions.
"For unobservability, see Section 5.1.
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3 Empirical Analysis

3.1 The Dynamics of Commodity Spot Prices, Con-
venience Yields, and Error Terms under Natural
Probability

As neither commodity spot prices nor convenience yields are observable, we
have to estimate their parameters using the Kalman filter® with their fu-
tures prices. We have already modeled commodity spot prices and conve-
nience yields under the risk-neutral probability, and thus, we can calculate
the Kalman filter with only these SDEs. However, because it would be useful
to check whether the model performs well under the natural probability, the
SDEs of commodity spot prices and convenience yields under the natural
probability are needed to estimate the model. For this purpose, we assume
the market price of risk that transforms the risk-neutral probability into the
natural probability.

Let us assume that Brownian motions under the risk-neutral probability
W (t) and Brownian motions under the natural probability W (t) satisfy

W(t) =W7F(t) + /t Oods

W (t) = [Ws, (t), -, W, (), W, (t), -+, W;, (8)]
Wp(t) = [WSI’Z (t)7 T 7WSI’2 (t)7 W(Slf(t)ﬁ T 7W5i(t)]T
00 = [05,0, "+ + 05,0, 0510, »05,0] T,

where 6 is the market price of risk, which is assumed to be constant. The
consequence of this assumption can be seen in the following SDEs under the
natural probability.?

dIn S;(t) = (vs,.o(t) + ) 5., In S5(t) +vsis, 52-(75)) dt

j=1
+o5,dWS (1) (7)

8For the Kalman filter, see Hamilton (1994).

9The solution for SDEs (7) and (8), the state equation, the observation equation, the
Kalman filters, forecasts, and the maximum likelihood for this model are available on
request.
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where

o2
Ysio(t) = r— 7 + bip, + biagt 4 05,050

Vs;s; = biag

Vs = —1
Ys.0 = ki + 05,050
Vo6, = TR

To implement the empirical analysis, for ease of calculation, we classify
the model into five cases, estimate each of them separately, and compare
them. The cases are: (i) b # 0 and a; = 1, (ii) b # 0 and ay = 1, (iii)
b=0,a1 =1,y = —agby, (iv) b = 0,a; = 0,a3 = 0, and (v) b = 0,a; =
0,b, = 0.1% This enables us to calculate the log-likelihood using the scalar
forms and to avoid the time-consuming calculation of the general case using
the matrix formula. In this subsection, we show the result when b # 0 and
as = 1.11 For the other results, see the Appendix. The GS model is enhanced
to have two commodity price processes and two convenience yield processes,
with correlations between each process.

3.2 Data

We use WTI and heating oil daily closing prices traded on the NYMEX from
January 2, 1990, to July 30, 2010. Five futures contracts, labeled Maturity 1,
Maturity 3, Maturity 5, Maturity 7, Maturity 9, are used in the estimation.
Maturity 1 stands for the contract closest to maturity, Maturity 3 stands for
the third closest maturity, and so on. The time to maturity corresponding
to these prices is also used. We set the risk-free rate equal to 4%.

10These cases are collectively exhaustive. This can be shown as follows. There are only
two cases: b # 0 and b = 0. For b # 0, there are only two cases, a; # 0 or ay # 0, because
otherwise we have b = 0. Furthermore, a; # 0 or as # 0 can be rescaled to 1, case (i) or
(ii), respectively. For b = 0, we have a; # 0, which can be rescaled to a; = 1, which is case
(iii), or a1 = 0. If a; = 0, then there are two possibilities, which are as = 0 or bo = 0, case
(iv) or (v), respectively; otherwise b = azb2 # 0. Furthermore, note that cases (i) and (ii)
may satisfy the cointegration condition (b < 0), but the other cases do not because b = 0.

"In our empirical analysis, this case is found to have the smallest AIC among the cases
that satisfy the cointegration condition in Proposition 2.3.
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Figure 1: WTI and heating oil daily closing prices from January 2, 1990, to
July 30, 2010. The black solid line and the blue dashed line denote the prices
of crude oil and heating oil, respectively.
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The basic statistics for these data are described in Table 1. As the matu-
rity dates are fixed, the time to maturity changes over time. Comparing WTT
crude oil with heating oil, we can see that the standard deviation of heating
oil is higher because the average price of heating oil is higher than that of
crude oil. The mean maturity and its standard deviation are quite close to
each other. Furthermore, note that the correlation between the futures prices
of WTT and heating oil is 0.995.

Table 1: Data statistics.

Futures contract Mean price Mean log return Mean maturity
(Standard deviation) (Standard deviation) (Standard deviation)

WTI crude oil

Maturity 1 36.69 (25.02) 0.0240 % (2.5417 %) 0.10 (0.04)
Maturity 3 36.79 (25.43) 0.0250 % (2.0547 %) 0.35 (0.04)
Maturity 5 36.71 (25.72) 0.0259 % (1.8571 %) 0.59 (0.04)
Maturity 7 36.60 (25.93) 0.0267 % (1.7382 %) 0.83 (0.04)
Maturity 9 36.48 (26.08) 0.0272 % (1.6528 %) 1.08 (0.04)
Heating oil
Maturity 1 101.67 (70.14) 0.0188 % (2.4679 %) 0.09 (0.04)
Maturity 3 102.23 (71.50) 0.0240 % (2.0456 %) 0.34 (0.04)
Maturity 5 102.40 (72.58) 0.0260 % (1.8614 %) 0.58 (0.04)
Maturity 7 102.36 (73.35) 0.0264 % (1.7512 %) 0.82 (0.04)
Maturity 9 102.17 (73.68) 0.0260 % (1.6702 %) 1.07 (0.04)

3.3 Estimation Results

We estimate the model using the Kalman filter. In Table 2, we report the
estimated parameters with standard errors. Note that the AIC for the GSC
model is lower than that for the GS model, which implies that the GSC
model fits the data better. As we can see, the estimated linear relation
vectors are [aj,as] = [—1.19,1.00] and the adjustment speeds are [by,by] =
[—0.05, —0.36], respectively. A comparison of these values with the standard
errors suggests that the linear relation among commodity prices empirically
affects the derivative prices.

As the values of by, by measure how much the linear relation affects the
spot prices, it also suggests that the heating oil price is much more affected
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by the linear relation, or the error correction term, than the crude oil price is.
Note that ay is —0.000072 and its standard error is 0.000004, which implies
that the relation term z(¢) includes time drift, but p, is small compared
with the standard error. Furthermore, b is —0.29. With both x; positive,
the cointegration conditions are satisfied. Therefore, we can compare the
coefficients with their standard deviations to check the significance of the
coefficients.

Except &4 in the GS model, @; are significant. However, they are different
between the two models. This is a result of the relation term z(t). As
mentioned above, the GSC model assumes that the deviation of the drift
terms from the risk-free rate is described by the convenience yield and the
term z(t). Thus, it is only a matter of which factor explains most of the
deviation, and &; depends on these factors. Both k; exceed 1, which is the
same as in the GS model.

Let us turn now to the volatility parameters. In the GSC model, crude
oil and heating oil spot prices have a positive correlation (pg, s, = 0.75). The
corresponding spot prices and convenience yields have relatively high positive
correlations pg,5, = 0.77 and pg,5, = 0.62, respectively, which is consistent
with the GS model. Moreover, crude oil spot prices and heating oil conve-
nience yields have no correlation (pg,5, = 0.00). However, we see that the
correlation for heating oil spot prices and crude oil convenience yields pg,s,
is relatively high (0.63). This is the same as in the GS model. It is intuitive
that spot prices and convenience yields among different commodities should
not be strongly correlated; however, heating oil prices are affected by crude
oil convenience yields. Volatilities of spot prices og,, 0g, and convenience
yields os,, 05, seem to be similar in the two models.

Table 3 shows the root mean square error (RMSE) and mean error (ME)
of the model. Although both models have small values, which indicates that
the models are well fitted, the RMSE and ME both favor the GSC model
with few exceptions.
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Table 2: Estimated parameters, with standard errors in parentheses. Data
are WTT and heating oil daily closing prices traded on the NYMEX from
January 2, 1990, to July 30, 2010.

GS GSC
Volatility parameters
os, 0.414476 (0.003512)  0.381896 (0.002241)
05, 0.377914 (0.002247)  0.406307 (0.002546)
os, 0.320532 (0.002552)  0.287109 (0.001652)
Os, 0.507958 (0.005171)  0.699693 (0.007743)
PS5, 0.698858 (0.005467)  0.748660 (0.004673)
PS8, 0.793308 (0.004015)  0.767305 (0.004128)
PS, 65 0.000058 (0.012618)  0.000072 (0.012604)
PS8, 0.505952 (0.005636)  0.628424 (0.005645)
PS8, 0.600362 (0.009234)  0.620154 (0.008083)
P5155 0.108853 (0.011792)  0.165843 (0.014062)
Convenience yield parameters
K1 1.070822 (0.005328)  1.140883 (0.006597)
Ko 1.294663 (0.014874)  1.085038 (0.015096)
a1 0.001375 (0.001417)  0.006611 (0.003161)
Q2 0.038074 (0.002409) -0.037714 (0.020791)

Linear relation parameters

Mz
ao
aq
a2
b1
ba

Market price of risk parameters

fs.0
05,0
05,0
05,0

T IIIIIII

o~ A A~~~

O@OO\I?UT%OJN)H
= © 00 IO Ui W N
O\_/\_/\/\/\_/\_/\_/\/\/

=

)

Log-likelihood
AIC
Sample size

0.083425 (0.267456)
-0.357933 (0.212986)
0.074827 (0.247218)
-0.281003 (0.282557)

0.000509
0.000000
0.000009
0.000000
0.000023
0.000002
0.001043
0.000742
0.000002
0.001138

0.000005)
0.000000)
0.000000)
0.000000)
0.000001)
0.000001)
0.000029)
0.000024)
0.000000)
0.000029)

AN AN AN AN AN N N N N N

153030.832494
-306005.664988
51590

1.144262 (0.046325)
-0.000072 (0.000004)
-1.187431 (0.006754)
1.000000 (n.a.)
-0.052615 (0.001626)
-0.356252 (0.005272)

0.478595 (0.235855)
0.817002 (0.231929)
-0.002131 (0.241285)
-0.351462 (0.269419)

0.000520
0.000002
0.000008
0.000000
0.000020
0.000003
0.001019
0.000700
0.000007
0.000999

0.000006)
0.000000)
0.000000)
0.000000)
0.000001)
0.000001)
0.000030)
0.000022)
0.000000)
0.000027)

Py

154335.136395
-308604.272790
51590
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Table 3: Root mean square error (RMSE) and Mean error (ME) for each

futures contract.

Contracts RMSE ME
Models GS GSC GS GSC

Crude oil

Maturity 1 0.032872 0.032943 -0.002727 -0.002741
Maturity 3 0.020227 0.020206 0.000462 -0.000003
Maturity 5 0.018617 0.018556 0.000565  0.000026
Maturity 7 0.017313 0.017296 0.000434 -0.000030
Maturity 9 0.017211 0.017152 0.000625  0.000170
Heating oil

Maturity 1 0.024144 0.024064 0.000889  0.000023
Maturity 3 0.037593 0.037136 0.000502 -0.001603
Maturity 5 0.032656 0.031699 0.000677 -0.000226
Maturity 7 0.018059 0.017767 0.000717 -0.000012
Maturity 9 0.038907 0.036419 0.000424 -0.003012

4 Hedging Futures

In this section, we implement the GSC and GS models for hedging long-term
futures contracts,'? which we call the target futures using short-term futures.
We empirically analyze the logarithms of the crude oil and heating oil prices.

As the GS model has two stochastic variables, we need two futures that
have different maturities to hedge, and the weights can be calculated by

12Recall that we are assuming the risk-free rate is constant, which implies that futures

and forwards are equally valued.
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solving the following system of equations.!?
dw = (9)
[ 0Gi(t,11)  8G:(t,T»)
@ — aS; 0S; ]
0Gi(t,T1) 0Gi(t,T2)
L 351' 86i
w = [’U)l,UJQ]T (10)
[0G;(t,T) 9G,(t,T)
_ 11
v as; 95 ’ .

where w; are weights for futures with maturity 7; and 7' is the maturity of
the target futures.

On the other hand, for the GSC model, which has Sj,d;,0;, and z as
stochastic variables,!* we need four futures to hedge when there are two
commodities to consider. Now, the system of equations for (9) is

3Gi(t,T1) 0G; (t,TQ) 3Gi(t,T3) 0G; (t,T4)
aS; 0S; a8, 0S8

8Gi(t,T1) 0G; (t,TQ) 8Gi(t,zT3) 0G; (t,lT4)

8Gi(t,T1) 0G; (t,TQ) 8Gi(t,T3) 0G; (t,T4)
04; 04; 04; 04;

8Gi(t,T1) 0G; (t,TQ) 8Gi(t,T3) 0G; (t,T4)
0z 0z 0z 0z

w = [wla Wz, W3, w4]T

|ecit, ) 0Gi(t,T) 9G,(t,T) 0G;(t,T)
N GSZ ’ 851 ’ 8(5] ’ 8,2

We emphasize that we use the futures formula in Proposition A.1 in the
Appendix to derive the hedging weights.

To calculate the hedging portfolio, we need the values of state variables
Si(t), 0i(t),0;(t), and z(t). There are two methods for calculating the values
of the state variables. One method is to use a Kalman filter, which we call
the Kalman filter method. The other method is to calculate the values of
the state variables by solving the observation equation, which only requires

13Gee Brennan and Crew (1997) and Schwartz (1997) for hedging long-term forwards
using short-term futures.

MFor calculating the hedge weights, we can use S;, S;,d;, and §; instead of S;,d;,d;,
and z. If we are considering more than three commodities, for example four commodities,
then using state variable z is more convenient for calculating hedge weights as we only
need n + 2 futures to hedge, whereas we need 2n when using S;, ;.
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futures prices and the estimated parameters. We call this method the simul-
taneous equation method. We implement both methods. The hedging error
ratio is calculated by dividing the hedging error value by the target futures
price of each hedging start period. The hedging error value is the difference
between the target futures price and the value of the hedge portfolio.

We hedge the futures that mature in 1 year and in 10 years with the
futures that mature in 1, 3, 5, and 7 months. As long-term futures, e.g. 10-
year futures, are not traded in the market, we cannot calculate their hedging
error precisely. Hence, to evaluate the hedging error, we also hedge 1-year
futures. We calculate the hedging error for 10-year futures by using their
theoretical price. The total hedging period is from January 2, 1990, to July
30, 2010. We roll the futures 3 business days before they mature, and each
hedging period is roughly 1 month. The hedging weight and the hedging
error are calculated daily.

The performance of the hedging simulation for the 1-year futures is indi-
cated in Table 4 and Figure 2. For both commodities, the results indicate
that the hedging error ratios are relatively small. This is true for both the
GSC and the GS models. Comparing the two models, we see that the GSC
model has a relatively good performance using the simultaneous equation
method, except for the case of crude oil.

Figure 3 shows the weights of the futures in the hedging portfolio whose
state variables are calculated by Kalman filters. For the GS model, the hedge
weights for 3-month futures are positive and those for 1-month futures are
negative. For the GSC model, the hedge weights for 7-month and 3-month
futures are positive and the others are negative.

In Table 5 and Figure 4, we show the performance of the hedging simu-
lation for 10-year futures. Obviously, the hedging error ratio is poorer than
that for the 1-year futures. However, note that this hedging error ratio is
calculated by using the theoretical price and, therefore, we cannot estimate
the hedge errors exactly. Note also that for both commodities, the GS model
performs significantly better than the GSC model. For the GSC model, this
is because the absolute hedge weight is very large, as indicated in Figure
5. Recall that the hedge weight is calculated as w = ® '¢. Some of the
values in @, especially the partial derivatives of the other convenience yield
d; and z, are too small and hence & ! and the hedge weight are very large. If
we erase the partial derivatives for J; and z and calculate the hedge weight,
the performance of the hedging simulation for 10-year futures improves, but
the performance for 1-year futures will not be as good as described above.
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Table 4: Performance of hedging 1-year futures. “Kalman filter” indicates
that the state variables are calculated using Kalman filters. “Simultaneous”
indicates that the state variables are calculated by solving the observation
equation.

Contracts Mean of hedging error ratio
Method GS GSC
Crude oil

Kalman filter  0.042603 -0.019405
Simultaneous  0.023230 -0.027480

Heating oil
Kalman filter 0.010182 0.004493
Simultaneous -0.026031 -0.012187

Figure 2: Performance of hedging 1-year futures. The two graphs on the
left show the results of the GS model, and the two graphs on the right show
the results of the GSC model. The blue solid line and the red dashed line
indicate hedge performance of WTT crude oil and heating oil, respectively.




21

Figure 3: Weights of futures for hedging 1-year futures, for which the state
variables are calculated by Kalman filters. The upper two figures show the
results for the GS model. The blue solid line and the red dashed line indicate
the hedging weights of the 1-month futures and 3-month futures, respectively.
The lower two figures show the results for the GSC model. The blue solid
line, the red dashed line, the green dotted line, and the black chained line
indicate the hedging weights of the 1-month futures, 3-month futures, 5-
month futures, and 7-month futures, respectively.
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This implies that the Gibson—Schwartz model is good enough for hedging
short-term and long-term commodity futures.

Table 5: Performance of hedging 10-year futures. “Kalman filter” indicates
that the state variables are calculated using Kalman filters. “Simultaneous”
indicates that the state variables are calculated by solving the observation

equation.
Contracts

Mean of hedging error ratio

Method

GS GSC

Crude oil
Kalman filter
Simultaneous

Heating oil
Kalman filter
Simultaneous

-0.333988 -12.315692
0.009467 -13.809328

-0.043942 -35.425612
-0.023776 -42.889075
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Figure 4: Performance of hedging 10-year futures. The two graphs on the left
present, the results of the GS model and the two graphs on the right present
the results of the GSC model. The blue solid line and the red dashed line
indicate the hedge performance of WTT crude oil and heating oil, respectively.

5 Discussion

5.1 Relations among Futures Prices

It should be noted that, in our setting, the linear relations among commodity
spot prices do not automatically apply to the linear relations among their
futures prices. Let us look at the dynamics of the logarithms of futures prices.
As in Appendix 2, we know that the logarithms of futures prices In G;(¢,T)
can be represented by

InGy(t,T) ch (t,T)In S;( Zg; (t,T)0;(t) + X'(t,T),

where

0G(t,T)
8ln S](t) N -

es, (b DG T), =550

cs, (t, T)Gi(t, T)

and X'(t,T) represents the residual.
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Figure 5: Weights of futures for hedging 10-year futures, for which the state
variables are calculated using Kalman filters. The upper two figures show the
results for the GS model. The blue solid line and the red dashed line indicate
the hedging weights of 1-month futures and 5-month futures, respectively.
The lower two figures show the result for the GSC model. The blue solid
line, the red dashed line, the green dotted line, and the black chained line
indicate the hedging weights of 1-month futures, 3-month futures, 5-month
futures, and 7-month futures, respectively.
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Using Ito’s lemma and the martingale property of futures prices, we have

dG,(1,T)

= Y s, (tT)Gi(t, T)os,dWs, (t +205 (t, T)Gi(t, T)os,dWs, (t)
7j=1

= Z (O-SjQSjOCSj (ta T)Gz(ta T) + 05j96j005j (ta T)Gz(ta T)) dt
7j=1

+3 oses, (4, TGy, T)AWE (1) + 205 cs; (8, T)Gy(t, T)dWy ().

This equation states two facts. First, the drift term under the risk-neutral
probability includes an error term equal to 0. Second, the drift term under
the natural probability is nonlinearly affected by futures prices G;(¢, 7). This
means that in either case, the adjustment coefficients for futures prices are
different from the coefficients of linear relations a; and adjustment coefficients
b; for spot prices.

We emphasize that the linear relation is not observable in the GSC model.
There are two aspects of this unobservability. First, it is modeled as spot
prices, which are not observable. If we model the linear relation using futures
prices, the advantage of our model will be the observability of the price, which
allows us to use simple regression analysis and avoid using the more technical
Kalman filter. Second, we modeled the linear relation under the risk-neutral
probability, which is not observable from the historical data. While a; do not
change with changes in probabilities, b; do, as we have seen in the equation
above. The adjustment coefficients are changed by the market price of risks;
this implies that if cointegration exists, the effects of the error correction
term on spot prices under the natural probability and under the risk-neutral
probability will be different. Thus, it may be interesting to model the lin-
ear relations among observable futures prices under the natural probability
instead of unobservable spot prices under the risk-neutral probability, and
analyze the effects on spot prices and other derivatives.

5.2 Multidimensional z(t)

In this paper, we have assumed that there is only one linear relation, which is
represented by the term z(¢). This can be relaxed to h(< n) different linear
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relations [21(#)...2,(t)]" that can be formalized as

2
dél(t) = Hz(dz—(Sl(t))dt—FO};de(sl(t), izl,...,n

2 h
dIn S;(t) = (r—asi—5i(t)+Zbijzj(t)> dt + og,dWs,(t), i=1,...,n
j=1

Z](t) = ,uz+a0jt+2aijln5’,~(t) ]:1,,h

=1

It is then simple to derive the futures and call option formulae. We can also
extend the assumption on market price of risk and formalize the state and ob-
servation equations for the Kalman filters. The difficulty of this model stems
from the number of parameters to consider when estimating the model. The
parameters to be estimated are n(1+ 2n) parameters for volatilities and cor-
relations, 2n parameters for convenience yields (&, k), 2h(n + 1) parameters
for linear relations (mu.;, ag;, aij, bij), 2n parameters for the market price of
risks (@), and other parameters that depend on the number of commodities
and futures maturity data used for covariance matrix R in the observation
equation. If we assume three commodities and two linear relations for the
model using three maturities of futures for each commodity, there will be 55
parameters to be estimated. To conduct a realistic empirical analysis, the
numbers of commodities and linear relations used have to be much smaller.

Furthermore, we can incorporate seasonality into the model. There are
various ways of modeling seasonality.'> One suggestion is the following.

2
dln Sl(t) = (T‘ — U;i - (57,(t) + bZZ(t)> dt + UsidWSi (t)

M;
+ ( Z d)i,mi,l COS(27Tmit) + ¢i,mi,2 sm(27rm,t)> dt + USidWSi (t)

m;=1

2(t) = potagt+ Y a;InSi(t).

=1

15Other models that include seasonality in commodity spot prices are Hannan, Ter-
rell, and Tuckwell (1970), Manoliu and Tompaidis (2002), Richter and Sorensen (2002),
Sorensen (2002), Geman and Nguyen (2005), Cortazar et al. (2008), Paschke and
Prokopczuk (2009), and Casassus et al. (2009).
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In this model, the seasonality is in the drift term of the dynamics of the log-
arithm of commodity prices d1n S;(t). This can be interpreted as demeaned
seasonality in the logarithm of commodity prices. Consider the dynamics of
the logarithm of commodity prices without the z(¢) term. Integrating

dln Si(t) = (r - % - 5i(t)> dt

M;
+ (Z Gim;.1 €08(2TM4t) + Dim 2 sin(27rmz-t)> dt + og.dWs, (t)
m;=1

from 0 to ¢, we have

InS;(t) = 1ns,-(0)+/01t <7"— Ufi —5,-(t)> dt

+ Z ¢Z7:;;LZ sin(27wm;t) — Q;z 02 Sin(2rmt) Z Dians 2

el ™m; el 27rmz-

+0’5i Wsi (t)

This implies that the above model includes the demeaned seasonality in the
logarithm of commodity prices.

6 Conclusion

In this paper, we formulated a commodity pricing model that incorporates
the effect of linear relations among commodity prices, which includes cointe-
gration under certain conditions. We derived futures and call option pricing
formulae and showed that, in contrast to Duan and Pliska (2004), the linear
relations among commodity prices, or the error correction term under appro-
priate conditions, should affect these derivative prices in the standard setup
of commodity pricing. Furthermore, we derived the condition for the model
to be cointegrated.

We emphasized that the proposed model can be interpreted as a gener-
alization of standard commodity models, especially the GS model. This is
because we decomposed the deviation of the drift in commodity returns from
the risk-free rate under the risk-neutral probability into two components:
convenience yield and the linear relation term z(¢). The proposed model can
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thus describe not only the usual storage effects captured by the convenience
yield, but also other causes such as impacts from other commodity prices
and transaction costs.

In the empirical analysis, we assumed that the market price of risk is lin-
ear in the convenience yield and the term z(t), and utilized the Kalman filter
technique. Using crude oil and heating oil market data, we estimated the
proposed model. The results suggested that the linear relations among com-
modity prices affect their derivative prices empirically. We also implemented
the model to examine the hedging of long-term futures.

Finally, it should be noted that while the linear relations among spot
prices play an important role, such spot prices are assumed to be unobserv-
able in standard commodity pricing models, including ours. Thus, it would
be interesting to model the linear relations among observable futures prices
instead of unobservable spot prices, and analyze the effects of the linear
relation, or cointegration under certain conditions, on derivatives.

It should be also noted that, as Duan and Pliska (2004) showed, if the
volatilities of commodity returns are stochastic, then cointegration affects
derivative prices. Although they do not investigate the effect of linear re-
lations among spot prices on derivative prices, Trolle and Schwartz (2009)
developed a commodity derivative pricing model with stochastic volatility.
Hence, it would also be interesting to advance a commodity derivative pric-
ing model to incorporate linear relations among spot prices under stochastic
volatility of their returns. We leave these questions for future study.
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Appendices

Appendix 1 Proof of Proposition 2.2

We prove the call option pricing formula. From Harrison and Kreps (1979)
or Harrison and Pliska (1981), we have

Ci(t,T) = e "TIE[(S{(T) - K)*]
= e’"(Tt)/D(e“ — K)n(z;|px, (t, T),ag(i(t, T))dz;,

where n(z|p, 0?) is the density function of the normal distribution with mean
p and variance o2, and

D ={zj|lzr; >InK}.

The integral can be calculated as

) O'g( 1 di1 y2
expizi fn(zi|px,, 0. )dr; = ex L+ = —/ ex — = 3d
| exvtentain ok )iz = exp d v+ T b [ exnd <ty

where

—InK + px, + 0%,
dilz 17

X,

and we omit the time parameters such as py, = px,(t,T) for notational
convenience. Furthermore,

[ (= /d 1 v
ex ———— pdx; = ex - = ,
D V2moy, P 2a§(i —0o V21 P 2 Y

where

—In K + px;
dp = ———,

Jx;
and again we omit the time parameters. Collecting all terms, we have

ok (6.T)

Ci(t,T) = e Tt DF=5=0(d;y (¢, 7)) — Ke "D (dja (¢, T)).
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Appendix 2 Derivation of Spot and Futures Commod-
ity Prices
In this subsection, we derive the closed formula for S;(T") and futures price
G;(t,T) without integrals and matrix forms for the case when b # 0.'® We
assume that x; # 0,Vi. Furthermore, for b # 0, we assume that b — x; # 0,
b+ k; #0,Vi and k; + k; # 0, V1, j.
First, note that equation (1) is equivalent to

Si(T) = Si(;f)exp{X;(t,T)} .
X(6T) = /t <T—U;i—5i(s)+biz(s)> ds+/t oo dWs (5).

The key point of the derivation is the calculation of the term z(t) as
follows:

/t z(s)ds = %(Z(T) —z(t) +m(T —1t)+ ;/t %@(s)ds

and

Hence, we have

A~

XLT) 2 /tT (r _ % Gi(s)+ biz(s)> ds + /tT o, AW, (5)

16For other cases, including the case when b = 0, the proofs can be obtained from the
author on request.
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b; a] T—s) —r;(T—s)
_Z/ b+ Iij —e )os; dWs, (s).

The i (t,T) and o (t,T) are

ng(6T) = B[Xi(t,T)]
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j=1
bz(m_ Z(t)) (1 eb(T t)) baj&j(t)( b(T'-1) —#; (T t))
b b(b+"53)
a biajy oy bay% b(T—t T—t
- 2 (e _1+Z b(b + r;) fme )
=1 d

and

0% (T) = Bl(Xi(t,T) = pg, (8, 7))

2 n
2 Os; 205i5i lea]
= 05i+—z——_§: 0:4;
K Ki — DKk
J=1

n 9 n
2b; ajas 5 bjajaros,5, 2bia0s,s,
% 4
b KK b/ﬁ}j

gk=1 Jj=1

2b a]akag 8k - Qbiaja's.s. " bzajakag.sk
e e - J 7 BRI .2 T —
Z e D e D D LU

k: j:l j,kil

i

2 n
g5, —25;(T—t)

1-—
2/<;~ ( ¢ ) -

2biaj05i5j

(1 — ¢ (itm)(T-0)

b a]aka(g O .
i 1 — e~ (Ri+R)(T=1)
J%:I b2k (k) + “k)( )

1
Hj —b

1
Hk—b
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& bga'akUS-S‘ _
— Z Higak(l — 2T

k=1
"\ 2ba, -1 1

_ Z b;(léﬂjjasm 2_[)(1 _ HTY) . b(l — e h(T-)
irm1 k) kj —

" b;a;05.s. " b;a;0s.s.
6 i%j06;0; i%jCS;6i —k;(T—1)
% § 2709 § Z9725% ) (1 —
( f’ = bn?nj p= b/f% ) ( ¢ )

2
I 9 ba]O'(g(g ba]O'S(g Z b a]akag Ok Zbiajakagk(;j
bk, K2 b2/<a K b2 K2
=1 it ] J

k=1

x (1 — e ri(T=D)

b/ﬁ}l(b‘i‘ Hj) b(b—'—h”,]) b2/ﬁ;k(b+/€j)

k=1

ba]akask(s —1 b(T— 1 i (T—
(1 — Ty (] e ()
+Z (b + ry) ){b( e ) gt )

U biajoss; s Diajaross, = bigjoss; | o~ Diajaros;s,
Sty e b 5 o,

j=1 jk=1 j=1 jk=1

" 2biaj05.5j 1 . 1 . .
_ i 1 — o~ (=BT _ 1 — o~ (mitr)(T—1)
§‘ : e ) (1—e )

— b/-ii(b + Hj) Ki + K;

2b; a]O'S 8; )
— 7(Hz*b)(T7t)
+ Z bri(ki — b ¢ )

202 RO N 1 1 _
E 1 — ¢~ (re=b)(T=1)y _ 1 — ¢ (mi+rR)(T—1)
" bQHkb+“J Hk—b( ‘ ) /‘ij—i-lik( ‘ )

2bz ajakagj(;k

S AGOT S0k 1~ (mi—b)(T 1))
bQIik (Hk - b) ¢ )

J,k=1

We have the following proposition, which shows the price formula for
futures.

Proposition A.1. Assuming (1), (2), and (3), the futures price of commod-
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ity © with maturity T at t is given by
Gi(t,T) = E[S(T)]

o% (t,T)
= S;(t)exp {,u&(t,T) + 17, }
where pg (t, 1) = EJX;(t,T)] and 0% (t T) = E[(X;(t,T) — g, (t,T))%].

Proof. Using risk neutrality and given the properties of the moment gener-
ating function, we obtain the futures price of commodity . O

Appendix 3 Cointegration Condition for the GSC model

In this subsection, we provide the cointegration condition for the GSC model.
Recall that the definition of cointegration is that In S;(t) — InS;(t — At) is
I(0) for every i and Y., a;In S;(t) is stationary.

We use the following proposition, which enhances a proposition from
Hamilton (1994).17

Proposition A.2. Let x(t) be a vector satisfying

ux—l-Z(I) e(t —s),

where €(t) is a zero mean covariance-stationary process, i.e. Ele(t)] = 0,
Ele(t)e(t—s)"] = Q(s) and {®(t)} is absolutely summable, i.e. Y o |p(s)i| <
00, where ¢;;(t) is the row i, column j element of ®(t). Then the autocovari-
ance 1is

El(@(t) - p)(@(t — ) — 1)1 = S0 @)Q(—u + s+ )@ (),

which tmplies that the autocovariance is only a function of lag s.

Proof. The proof follows the proposition shown in Hamilton (1994). First,
define

yal(t Z Pu(u)e(t — u),

17Cf. Hamilton(1994), Pr0p051t10n 10.2, p. 263.
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where ¢;(u) is the row ¢, column [ element of matrix ®(u). Note that

n
t) = pai + Z ya(t)
=1

where x;(t) and p,; are the ith elements of (t) and p,, respectively. Let us
calculate the autocovariance of y;(t).

E[yzl( )y]m t_ S ] — ZZd)zl ¢]m wlm( u—|—s—|—v),

u=0 v=0

where we denote wy,,(t) as the row [, column m element of Q(t) and inter-
change the expectation operator and summation operator because

ZZm w)pim(v)] = |du(u) Z|¢gm )| < 0.
u=0

u=0 v=0

We calculate the autocovariance of x(t).

E[(sz(t) — um)(a:](t — S ,Uq] Z Z ¢zl ¢]m Wlm( u+s+ U)

u=0 v=0 [=1 m=1

As D >0 L di(u)@jm(v)wim(—u + s + v) is the row 4, column j element
of ®(u)2(—u + s+ v)P(v), the proposition is proved. O

Let us assume that e’ < 1( <= b < 0),e "4 < 1( < £; > 0).
We now prove that In S;(¢) is cointegrated. First, we see that z(t) is
stationary. Note that

¢ t
Si(t) = e7FAS(t — At) +/ e kidyds + / e =) g5 AW (5).
t—At t—At

As e %4t < 1, this yields
5i(t) = e A (dy (1 — sAE) + &5, (1 — sAL)),

s=0

where

t
ds.(t) = /A e F i) ki dds
t—At

t
enlt) = / o d W, (5)
t—At
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Note that dj,(t) does not depend on ¢, which can be easily confirmed by
integrating or using changes of variables.
The z(t) can be expanded as follows.

n

! 1
2(t) = Pyt — At) + / eb(t=9) (Z ar — 5 Z ami) ds
t—At

=1 =1
n

t
- Z a; / e =9)5,(s)ds
N

=1
n

t
SY o [ ()
t— At

=1

t n 1 n
_ bAt b(t—s) ) -2
= e z(t—At)+/ e ay + a;r — = a;oq |ds
Z / Ri(s—t4O0) g g

=

x(ie v 1"%“( (t—vAt)—l—asi(t—vAt)))

S

=

[
+/tAt/6 )i g dsd W, (u)
|

b(t—s)—k;(s—t+At) A

—e a;ds

n t

+ a; tsO’gdWs()

=1

where we use Fubini’s theorem for stochastic integrals and

t
/ e?=95,(s)ds
t— At
t
— / 6b(t—s) ki (s—t+At) 5( At) _|_€ b(t— s) & eb(t—s)—m(s—t—l—At)&idS
t

— At
t t
t—NAt Ju
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Thus, from e*~t < 1,

o0

A(t) = D ePBd(t — sAL) + e (t — sAL))

s=0

+D N et M L (t — (s 4 v + 1) At),

s=0 v=0
where
t n 1 n
d,(t) = / et=5) Z a;r — — a;oz. |ds

t-At i=1 2 i=1

n t 00

. Z az/ eb(t—s)—n (s—t-l—At)dS Z 6—(v—1)n At g (t _ UAt)
=1 JtoAt v=1

n t
. Z a; / eb(tis)OAéi _ eb(tfs)fni(sfﬂ»At)didS
= Ji-nt
t t
ealt) = / / btt=s)=rils=w) 5o dsdW;, (u)
t—At Ju
n t
+ Z a; / Gb(tis)O'Si dWSl (S)
= Ji-nt
n t
£n(t) = — Z a; / =) =rils=t+AD goes (1),
= Ji-nt

Again, d,(t) does not depend on t and €,,(t) and £,5(t) are white noise.
From Proposition A.2, we can see that z(t) is stationary. Therefore, In S;(t)
is cointegrated.



Next, we check that In S;(t) — In S;(t — At) is 1(0) for every i.
In Sl (t) —In Sz (t — At)

¢ 2 ¢
= / (r — % — 0;(s) + biz(s))ds +/ 05, AW, (s)
t—At t—=At

o t
= s, + E ( _ / 6—m(s—t+At)dS> e—smAthi (t . (S + 1)At)
=0 t—At

+be" ST AL ( Z ePBle, (t— (5 +1)At)

s=0

+ Z Z esbAtvaAtgzz (t _ (5 + v+ Q)At)>

s=0 v=0

n s
—b; Z a; / / eb(sfu)fnj (uft+At)dudS
— t— At Jt—At

(Ze v— ln,At _ UAt)) + €ms; (1),

where

o t
Hins;, = J— /N a; A\t + & / o Fils—t+A) g
2 t—At

n

n ' a .0-2‘ t s
+b; Z a;r — M / / e’ duds
. 2 t—ot Jt-At

- Za]a]/ / (s—u)(1 _ e—nj(u—t-l—At))dudS
At Jt At

t

o0

_/ —rils— t+At)dSZ TSRAL (s (t— (s + 1)At))
t— At

s=0
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+bie? At ( > et (s + 1)At)>

s=0

n t s
_bi by / / eb(s—u)—nj(u—t—l—At) duds
jz; ! t—At Jt—NAt

v=1

t t s
€ins; = / / / €b(s_u)_ni(u_v)05i dudeW(;l (U)
t—AtJv Ju

n t t
+3 a / / Vg, dsdWs, (u)
j=1 t—AtJu
t

+/ O'SidWSi(S).
t—At

tin s, does not depend on time ¢ by using changes of variables. Further-
more, note that the stochastic terms are white noise. Therefore, we can use
Proposition A.2, which concludes that In S;(t) — In S;(t — At) are I(0). This
completes the proof.

Appendix 4 Other Empirical Results for the GSC Model

In this subsection, we show the empirical results for the other cases: (i) b # 0
and a; =1, (ili) b= 0,a; = 1,by = —agbs, (iv) b =0,a; = 0,a = 0, and (v)
b=20,a; =0,by = 0. The estimation results are presented in Tables 6 and 7.
Except for case (iii), we see that the AIC is lower than that in the GS model.
Furthermore, we analyze the result of case (iv), because this case has the
lowest AIC, including case (i) b # 0 and a; = 1 and the GS model. Recall
that this case does not satisfy the condition of cointegration and, thus, the
estimated parameters are not valid, which means these are not comparable
to standard deviations.

For case (iv), in which the linear relation vectors a; are both 0, the adjust-
ment speeds are [by, by] = [—0.109099, 0.095277], respectively. The standard
deviations for these parameters are very large. The time drift parameters ag
and g, are 0.000001 and 0.012542, respectively.

Let us turn to the convenience yields. Note that x, is negative, which
means that the convenience yield is not stationary. Both long-term means
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«; are small compared with the standard deviations, but the adjustment
parameters k; are larger than the standard deviations.

A comparison of case (i) and the GS model does not reveal any significant
differences between the volatility parameters. The differences we indicate are
between the volatility parameters of the heating oil convenience yield oy,,
correlations of heating oil price and crude oil convenience yield pg,s,, and
correlations of the convenience yields ps,s,. 05, for case (iv) is much less
volatile than the two previous models. The correlations pg,s, and ps,s, are
lower.

Tables 8 and 9 show the root mean square error (RMSE) and mean error
(ME) of the four cases. A comparison of the GS model and case (i) indicates
that the result of heating oil for maturity 1 is not good, although maturity
5 is somewhat improved; there is no significant improvement or depreciation
in the other parts.
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Table 6: Estimated parameters, with standard errors in parentheses. Data
are WTT and heating oil daily closing prices traded on the NYMEX from

January 2, 1990, to July 30, 2010.

(i)

(iii)

Volatility parameters

os, 0.366667 (0.001942)  0.368996 (0.004328)
oS, 0.403866 (0.002648)  0.356059 (0.005757)
05, 0.292311 (0.001850)  0.198031 (0.003283)
05, 0.689807 (0.007995)  0.211847 (0.005608)
PS1 S5 0.714434 (0.005201)  0.858236 (0.007080)
PS8, 0.737688 (0.004359)  0.002200 (0.020520)
PS16o 0.000051 (0.012178)  0.000382 (0.056260)
PSs61 0.528267 (0.006447) -0.050049 (0.020261)
PSo5, 0.651368 (0.007394)  0.388430 (0.052287)
05,65 0.109110 (0.013473)  -0.000335 (0.001343)
Convenience yield parameters
K1 1.142947 (0.007264)  0.886730 (0.005096)
K2 1.256849 (0.016329)  0.026644 (0.029419)
a1 0.019111 (0.002216)  0.076056 (0.003200)
Qo 0.013057 (0.014289)  0.016721 (1.041906)

Linear relation parameters

- 0.023941 (0.045201)  -0.022223 (1.966758)
ao 0.000106 (0.000003)  0.006951 (0.005982)
ay 1.000000 (n.a.) 1.000000 (n.a.)
as -0.725814 (0.007109)  -0.008302 (0.009216)
by 0.052334 (0.002303)  -0.000572 (n.a.)
by 0.366034 (0.005675)  -0.068889 (0.035397)

Market price of risk parameters

05,0 0.199469 (0.222492)  0.082667 (0.330452)
05,0 -0.233062 (0.233117)  0.185452 (0.339923)
05.0 0.011876 (0.230454)  -1.799341 (0.332545)
05,0 0.006551 (0.273943)  -0.004155 (0.810891)
R(1,1) 0.000515 (0.000005)  0.000919 (0.000013)
R(2,2) 0.000000 (0.000000)  0.000030 (0.000001)
R(3,3) 0.000009 (0.000000)  0.000001 (0.000000)
R(4,4) 0.000000 (0.000000)  0.000002 (0.000000)
R(5,5) 0.000021 (0.000001)  0.000007 (0.000000)
R(6,6) 0.000001 (0.000001)  0.006362 (0.000168)
R(7,7) 0.001022 (0.000030)  0.000895 (0.000023)
R(8,8) 0.000696 (0.000022)  0.000015 (0.000001)
R(9,9) 0.000008 (0.000000)  0.000000 (0.000000)
R(10,10) 0.001017 (0.000028)  0.000766 (0.000018)

Log-likelihood
AIC

sample size

154178.537078
-308291.074155
51590

151160.610135
-302257.220269
51590




Table 7: Estimated parameters, with standard errors in parentheses.
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Data

are WTT and heating oil daily closing prices traded on the NYMEX from
January 2, 1990, to July 30, 2010.

(iv) (v)
Volatility parameters
os, 0.350206 (0.001866) 0.336697 (0.001782)
05, 0.329622 (0.003536) 0.313910 (0.002938)
os, 0.265981 (0.002176) 0.242048 (0.002008)
Os, 0.244615 (0.005482) 0.205013 (0.004326)
PS15, 0.625170 (0.008841) 0.685699 (0.008048)
PS5, 0.758072 (0.004341) 0.715504 (0.005356)
PS1 6, -0.000129 (0.011527) -0.000452 (0.013543)
PSy6, 0.347681 (0.009722) 0.351016 (0.010844)
PS5, 0.645149 (0.010296) 0.589559 (0.011140)
P5155 0.017574 (0.011490) 0.002437 (0.013464)

Convenience yield parameters

K1

0.949412 (0.005239)
-0.231644 (0.017156)
0.016148 (0.051007)

0.014541 (0.191621)

Linear relation parameters

Mz
ao
aj
a2
b1
ba

0.012542 (12.485066)
0.000001 (0.000519)
0.000000 (n.a.)
0.000000 (n.a.)

-0.109099 (108.382591)

0.095277 (94.836457)

Market price of risk parameters

fs.0
05,0
05,0
05,0

EEEEEEEEE

O@OO\I?UT%OJN)H
= © 00 O Ui W N
O\_/\_/\/\/\_/\_/\_/\/\/

=

)

Log-likelihood
AIC

sample size

0.005576 (0.235339)
0.026724 (0.252499)
-0.093062 (0.248346)
-0.000270 (0.380532)

0.001041
0.000046
0.000000 (0.000000
0.000000 (0.000000

(0.000016
(
E
0.000009 (0.000000
(
(
(
(
(

0.000001

0.006745 (0.000173
0.001100 (0.000028
0.000000 (0.000000
0.000000 (0.000000
0.001038 (0.000027

~— e e o e ~—

154897.735778
-309731.471557
51590

0.951637 (0.005549)
-0.345426 (0.019500)
0.007442 (0.043916)
0.149694 (0.009358)

0.024759 (2.826261)
-0.000066 (0.006340)
0.000000 (n.a.)
-0.130021 (12.499299)
0.030849 (2.963343)
0.000000 (n.a.)

0.002583 (0.222497)
0.371485 (0.242683)
-0.560535 (0.232429)
0.000262 (0.383377)

0.001124
0.000051
0.000000
0.000000
0.000008
0.006392
0.001091
0.000002
0.000002
0.001113

0.000018
0.000001
0.000000
0.000000
0.000000
0.000162
0.000029
0.000000
0.000000
0.000031

Py
NN N N S e N N N

154743.996275
-309423.992550
51590
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Table 8: RMSE (root mean square error) and ME (mean error) for each

futures contract.

Contracts RMSE ME
Models (ii) (iii) (ii) (iii)

Crude oil

Maturity 1 0.032943 0.038575 -0.002741 -0.002193
Maturity 3 0.020206 0.021061 -0.000003  0.000400
Maturity 5 0.018556 0.018369 0.000026 -0.000083
Maturity 7 0.017296 0.017350 -0.000030 -0.000495
Maturity 9 0.017152 0.016782 0.000170 -0.000185
Heating oil

Maturity 1  0.024064 0.082284 0.000023 -0.000638
Maturity 3 0.037136 0.035022 -0.001603  0.000271
Maturity 5 0.031699 0.018464 -0.000226  0.000495
Maturity 7 0.017767 0.017380 -0.000012 0.000711
Maturity 9 0.036419 0.035860 -0.003012 0.001615

Table 9: RMSE (root mean square error) and ME (mean error) for each

futures contract.

Contracts RMSE ME
Models (iv) (v) (iv) (v)

Crude oil

Maturity 1 0.039733 0.039573 -0.003794 -0.003158
Maturity 3 0.021257 0.021247 0.000062  0.000170
Maturity 5 0.018388 0.018378 0.000443  0.000248
Maturity 7 0.017312 0.017300 0.000412  0.000159
Maturity 9 0.016819 0.016791 0.000619  0.000544
Heating oil

Maturity 1  0.084311 0.082893 -0.001628 -0.010059
Maturity 3 0.037614 0.037121 -0.000298 -0.003341
Maturity 5 0.018668 0.018706 0.000332 -0.000079
Maturity 7 0.017853 0.017942 0.000348 -0.000137
Maturity 9 0.037304 0.038042 -0.000148 -0.003425
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