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Figure 3: Weights of futures for hedging 1-year futures, for which the state
variables are calculated by Kalman filters. The upper two figures show the
results for the GS model. The blue solid line and the red dashed line indicate
the hedging weights of the 1-month futures and 3-month futures, respectively.
The lower two figures show the results for the GSC model. The blue solid
line, the red dashed line, the green dotted line, and the black chained line
indicate the hedging weights of the 1-month futures, 3-month futures, 5-
month futures, and 7-month futures, respectively.
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This implies that the Gibson—Schwartz model is good enough for hedging
short-term and long-term commodity futures.

Table 5: Performance of hedging 10-year futures. “Kalman filter” indicates
that the state variables are calculated using Kalman filters. “Simultaneous”
indicates that the state variables are calculated by solving the observation

equation.
Contracts

Mean of hedging error ratio

Method

GS GSC

Crude oil
Kalman filter
Simultaneous

Heating oil
Kalman filter
Simultaneous

-0.333988 -12.315692
0.009467 -13.809328

-0.043942 -35.425612
-0.023776 -42.889075
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Figure 4: Performance of hedging 10-year futures. The two graphs on the left
present, the results of the GS model and the two graphs on the right present
the results of the GSC model. The blue solid line and the red dashed line
indicate the hedge performance of WTT crude oil and heating oil, respectively.

5 Discussion

5.1 Relations among Futures Prices

It should be noted that, in our setting, the linear relations among commodity
spot prices do not automatically apply to the linear relations among their
futures prices. Let us look at the dynamics of the logarithms of futures prices.
As in Appendix 2, we know that the logarithms of futures prices In G;(¢,T)
can be represented by

InGy(t,T) ch (t,T)In S;( Zg; (t,T)0;(t) + X'(t,T),

where

0G(t,T)
8ln S](t) N -

es, (b DG T), =550

cs, (t, T)Gi(t, T)

and X'(t,T) represents the residual.
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Figure 5: Weights of futures for hedging 10-year futures, for which the state
variables are calculated using Kalman filters. The upper two figures show the
results for the GS model. The blue solid line and the red dashed line indicate
the hedging weights of 1-month futures and 5-month futures, respectively.
The lower two figures show the result for the GSC model. The blue solid
line, the red dashed line, the green dotted line, and the black chained line
indicate the hedging weights of 1-month futures, 3-month futures, 5-month
futures, and 7-month futures, respectively.
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Using Ito’s lemma and the martingale property of futures prices, we have

dG,(1,T)

= Y s, (tT)Gi(t, T)os,dWs, (t +205 (t, T)Gi(t, T)os,dWs, (t)
7j=1

= Z (O-SjQSjOCSj (ta T)Gz(ta T) + 05j96j005j (ta T)Gz(ta T)) dt
7j=1

+3 oses, (4, TGy, T)AWE (1) + 205 cs; (8, T)Gy(t, T)dWy ().

This equation states two facts. First, the drift term under the risk-neutral
probability includes an error term equal to 0. Second, the drift term under
the natural probability is nonlinearly affected by futures prices G;(¢, 7). This
means that in either case, the adjustment coefficients for futures prices are
different from the coefficients of linear relations a; and adjustment coefficients
b; for spot prices.

We emphasize that the linear relation is not observable in the GSC model.
There are two aspects of this unobservability. First, it is modeled as spot
prices, which are not observable. If we model the linear relation using futures
prices, the advantage of our model will be the observability of the price, which
allows us to use simple regression analysis and avoid using the more technical
Kalman filter. Second, we modeled the linear relation under the risk-neutral
probability, which is not observable from the historical data. While a; do not
change with changes in probabilities, b; do, as we have seen in the equation
above. The adjustment coefficients are changed by the market price of risks;
this implies that if cointegration exists, the effects of the error correction
term on spot prices under the natural probability and under the risk-neutral
probability will be different. Thus, it may be interesting to model the lin-
ear relations among observable futures prices under the natural probability
instead of unobservable spot prices under the risk-neutral probability, and
analyze the effects on spot prices and other derivatives.

5.2 Multidimensional z(t)

In this paper, we have assumed that there is only one linear relation, which is
represented by the term z(¢). This can be relaxed to h(< n) different linear
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relations [21(#)...2,(t)]" that can be formalized as

2
dél(t) = Hz(dz—(Sl(t))dt—FO};de(sl(t), izl,...,n

2 h
dIn S;(t) = (r—asi—5i(t)+Zbijzj(t)> dt + og,dWs,(t), i=1,...,n
j=1

Z](t) = ,uz+a0jt+2aijln5’,~(t) ]:1,,h

=1

It is then simple to derive the futures and call option formulae. We can also
extend the assumption on market price of risk and formalize the state and ob-
servation equations for the Kalman filters. The difficulty of this model stems
from the number of parameters to consider when estimating the model. The
parameters to be estimated are n(1+ 2n) parameters for volatilities and cor-
relations, 2n parameters for convenience yields (&, k), 2h(n + 1) parameters
for linear relations (mu.;, ag;, aij, bij), 2n parameters for the market price of
risks (@), and other parameters that depend on the number of commodities
and futures maturity data used for covariance matrix R in the observation
equation. If we assume three commodities and two linear relations for the
model using three maturities of futures for each commodity, there will be 55
parameters to be estimated. To conduct a realistic empirical analysis, the
numbers of commodities and linear relations used have to be much smaller.

Furthermore, we can incorporate seasonality into the model. There are
various ways of modeling seasonality.'> One suggestion is the following.

2
dln Sl(t) = (T‘ — U;i - (57,(t) + bZZ(t)> dt + UsidWSi (t)

M;
+ ( Z d)i,mi,l COS(27Tmit) + ¢i,mi,2 sm(27rm,t)> dt + USidWSi (t)

m;=1

2(t) = potagt+ Y a;InSi(t).

=1

15Other models that include seasonality in commodity spot prices are Hannan, Ter-
rell, and Tuckwell (1970), Manoliu and Tompaidis (2002), Richter and Sorensen (2002),
Sorensen (2002), Geman and Nguyen (2005), Cortazar et al. (2008), Paschke and
Prokopczuk (2009), and Casassus et al. (2009).
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In this model, the seasonality is in the drift term of the dynamics of the log-
arithm of commodity prices d1n S;(t). This can be interpreted as demeaned
seasonality in the logarithm of commodity prices. Consider the dynamics of
the logarithm of commodity prices without the z(¢) term. Integrating

dln Si(t) = (r - % - 5i(t)> dt

M;
+ (Z Gim;.1 €08(2TM4t) + Dim 2 sin(27rmz-t)> dt + og.dWs, (t)
m;=1

from 0 to ¢, we have

InS;(t) = 1ns,-(0)+/01t <7"— Ufi —5,-(t)> dt

+ Z ¢Z7:;;LZ sin(27wm;t) — Q;z 02 Sin(2rmt) Z Dians 2

el ™m; el 27rmz-

+0’5i Wsi (t)

This implies that the above model includes the demeaned seasonality in the
logarithm of commodity prices.

6 Conclusion

In this paper, we formulated a commodity pricing model that incorporates
the effect of linear relations among commodity prices, which includes cointe-
gration under certain conditions. We derived futures and call option pricing
formulae and showed that, in contrast to Duan and Pliska (2004), the linear
relations among commodity prices, or the error correction term under appro-
priate conditions, should affect these derivative prices in the standard setup
of commodity pricing. Furthermore, we derived the condition for the model
to be cointegrated.

We emphasized that the proposed model can be interpreted as a gener-
alization of standard commodity models, especially the GS model. This is
because we decomposed the deviation of the drift in commodity returns from
the risk-free rate under the risk-neutral probability into two components:
convenience yield and the linear relation term z(¢). The proposed model can
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thus describe not only the usual storage effects captured by the convenience
yield, but also other causes such as impacts from other commodity prices
and transaction costs.

In the empirical analysis, we assumed that the market price of risk is lin-
ear in the convenience yield and the term z(t), and utilized the Kalman filter
technique. Using crude oil and heating oil market data, we estimated the
proposed model. The results suggested that the linear relations among com-
modity prices affect their derivative prices empirically. We also implemented
the model to examine the hedging of long-term futures.

Finally, it should be noted that while the linear relations among spot
prices play an important role, such spot prices are assumed to be unobserv-
able in standard commodity pricing models, including ours. Thus, it would
be interesting to model the linear relations among observable futures prices
instead of unobservable spot prices, and analyze the effects of the linear
relation, or cointegration under certain conditions, on derivatives.

It should be also noted that, as Duan and Pliska (2004) showed, if the
volatilities of commodity returns are stochastic, then cointegration affects
derivative prices. Although they do not investigate the effect of linear re-
lations among spot prices on derivative prices, Trolle and Schwartz (2009)
developed a commodity derivative pricing model with stochastic volatility.
Hence, it would also be interesting to advance a commodity derivative pric-
ing model to incorporate linear relations among spot prices under stochastic
volatility of their returns. We leave these questions for future study.
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Appendices

Appendix 1 Proof of Proposition 2.2

We prove the call option pricing formula. From Harrison and Kreps (1979)
or Harrison and Pliska (1981), we have

Ci(t,T) = e "TIE[(S{(T) - K)*]
= e’"(Tt)/D(e“ — K)n(z;|px, (t, T),ag(i(t, T))dz;,

where n(z|p, 0?) is the density function of the normal distribution with mean
p and variance o2, and

D ={zj|lzr; >InK}.

The integral can be calculated as

) O'g( 1 di1 y2
expizi fn(zi|px,, 0. )dr; = ex L+ = —/ ex — = 3d
| exvtentain ok )iz = exp d v+ T b [ exnd <ty

where

—InK + px, + 0%,
dilz 17

X,

and we omit the time parameters such as py, = px,(t,T) for notational
convenience. Furthermore,

[ (= /d 1 v
ex ———— pdx; = ex - = ,
D V2moy, P 2a§(i —0o V21 P 2 Y

where

—In K + px;
dp = ———,

Jx;
and again we omit the time parameters. Collecting all terms, we have

ok (6.T)

Ci(t,T) = e Tt DF=5=0(d;y (¢, 7)) — Ke "D (dja (¢, T)).
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Appendix 2 Derivation of Spot and Futures Commod-
ity Prices
In this subsection, we derive the closed formula for S;(T") and futures price
G;(t,T) without integrals and matrix forms for the case when b # 0.'® We
assume that x; # 0,Vi. Furthermore, for b # 0, we assume that b — x; # 0,
b+ k; #0,Vi and k; + k; # 0, V1, j.
First, note that equation (1) is equivalent to

Si(T) = Si(;f)exp{X;(t,T)} .
X(6T) = /t <T—U;i—5i(s)+biz(s)> ds+/t oo dWs (5).

The key point of the derivation is the calculation of the term z(t) as
follows:

/t z(s)ds = %(Z(T) —z(t) +m(T —1t)+ ;/t %@(s)ds

and

Hence, we have

A~

XLT) 2 /tT (r _ % Gi(s)+ biz(s)> ds + /tT o, AW, (5)

16For other cases, including the case when b = 0, the proofs can be obtained from the
author on request.
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b; a] T—s) —r;(T—s)
_Z/ b+ Iij —e )os; dWs, (s).

The i (t,T) and o (t,T) are

ng(6T) = B[Xi(t,T)]
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j=1
bz(m_ Z(t)) (1 eb(T t)) baj&j(t)( b(T'-1) —#; (T t))
b b(b+"53)
a biajy oy bay% b(T—t T—t
- 2 (e _1+Z b(b + r;) fme )
=1 d

and

0% (T) = Bl(Xi(t,T) = pg, (8, 7))

2 n
2 Os; 205i5i lea]
= 05i+—z——_§: 0:4;
K Ki — DKk
J=1

n 9 n
2b; ajas 5 bjajaros,5, 2bia0s,s,
% 4
b KK b/ﬁ}j

gk=1 Jj=1

2b a]akag 8k - Qbiaja's.s. " bzajakag.sk
e e - J 7 BRI .2 T —
Z e D e D D LU

k: j:l j,kil

i

2 n
g5, —25;(T—t)

1-—
2/<;~ ( ¢ ) -

2biaj05i5j

(1 — ¢ (itm)(T-0)

b a]aka(g O .
i 1 — e~ (Ri+R)(T=1)
J%:I b2k (k) + “k)( )

1
Hj —b

1
Hk—b

S R L)
Kj + K

(1- e—(njfb)(Tft)) _ (1— ef(nrb)(Tft))
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& bga'akUS-S‘ _
— Z Higak(l — 2T

k=1
"\ 2ba, -1 1

_ Z b;(léﬂjjasm 2_[)(1 _ HTY) . b(l — e h(T-)
irm1 k) kj —

" b;a;05.s. " b;a;0s.s.
6 i%j06;0; i%jCS;6i —k;(T—1)
% § 2709 § Z9725% ) (1 —
( f’ = bn?nj p= b/f% ) ( ¢ )

2
I 9 ba]O'(g(g ba]O'S(g Z b a]akag Ok Zbiajakagk(;j
bk, K2 b2/<a K b2 K2
=1 it ] J

k=1

x (1 — e ri(T=D)

b/ﬁ}l(b‘i‘ Hj) b(b—'—h”,]) b2/ﬁ;k(b+/€j)

k=1

ba]akask(s —1 b(T— 1 i (T—
(1 — Ty (] e ()
+Z (b + ry) ){b( e ) gt )

U biajoss; s Diajaross, = bigjoss; | o~ Diajaros;s,
Sty e b 5 o,

j=1 jk=1 j=1 jk=1

" 2biaj05.5j 1 . 1 . .
_ i 1 — o~ (=BT _ 1 — o~ (mitr)(T—1)
§‘ : e ) (1—e )

— b/-ii(b + Hj) Ki + K;

2b; a]O'S 8; )
— 7(Hz*b)(T7t)
+ Z bri(ki — b ¢ )

202 RO N 1 1 _
E 1 — ¢~ (re=b)(T=1)y _ 1 — ¢ (mi+rR)(T—1)
" bQHkb+“J Hk—b( ‘ ) /‘ij—i-lik( ‘ )

2bz ajakagj(;k

S AGOT S0k 1~ (mi—b)(T 1))
bQIik (Hk - b) ¢ )

J,k=1

We have the following proposition, which shows the price formula for
futures.

Proposition A.1. Assuming (1), (2), and (3), the futures price of commod-
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ity © with maturity T at t is given by
Gi(t,T) = E[S(T)]

o% (t,T)
= S;(t)exp {,u&(t,T) + 17, }
where pg (t, 1) = EJX;(t,T)] and 0% (t T) = E[(X;(t,T) — g, (t,T))%].

Proof. Using risk neutrality and given the properties of the moment gener-
ating function, we obtain the futures price of commodity . O

Appendix 3 Cointegration Condition for the GSC model

In this subsection, we provide the cointegration condition for the GSC model.
Recall that the definition of cointegration is that In S;(t) — InS;(t — At) is
I(0) for every i and Y., a;In S;(t) is stationary.

We use the following proposition, which enhances a proposition from
Hamilton (1994).17

Proposition A.2. Let x(t) be a vector satisfying

ux—l-Z(I) e(t —s),

where €(t) is a zero mean covariance-stationary process, i.e. Ele(t)] = 0,
Ele(t)e(t—s)"] = Q(s) and {®(t)} is absolutely summable, i.e. Y o |p(s)i| <
00, where ¢;;(t) is the row i, column j element of ®(t). Then the autocovari-
ance 1is

El(@(t) - p)(@(t — ) — 1)1 = S0 @)Q(—u + s+ )@ (),

which tmplies that the autocovariance is only a function of lag s.

Proof. The proof follows the proposition shown in Hamilton (1994). First,
define

yal(t Z Pu(u)e(t — u),

17Cf. Hamilton(1994), Pr0p051t10n 10.2, p. 263.
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where ¢;(u) is the row ¢, column [ element of matrix ®(u). Note that

n
t) = pai + Z ya(t)
=1

where x;(t) and p,; are the ith elements of (t) and p,, respectively. Let us
calculate the autocovariance of y;(t).

E[yzl( )y]m t_ S ] — ZZd)zl ¢]m wlm( u—|—s—|—v),

u=0 v=0

where we denote wy,,(t) as the row [, column m element of Q(t) and inter-
change the expectation operator and summation operator because

ZZm w)pim(v)] = |du(u) Z|¢gm )| < 0.
u=0

u=0 v=0

We calculate the autocovariance of x(t).

E[(sz(t) — um)(a:](t — S ,Uq] Z Z ¢zl ¢]m Wlm( u+s+ U)

u=0 v=0 [=1 m=1

As D >0 L di(u)@jm(v)wim(—u + s + v) is the row 4, column j element
of ®(u)2(—u + s+ v)P(v), the proposition is proved. O

Let us assume that e’ < 1( <= b < 0),e "4 < 1( < £; > 0).
We now prove that In S;(¢) is cointegrated. First, we see that z(t) is
stationary. Note that

¢ t
Si(t) = e7FAS(t — At) +/ e kidyds + / e =) g5 AW (5).
t—At t—At

As e %4t < 1, this yields
5i(t) = e A (dy (1 — sAE) + &5, (1 — sAL)),

s=0

where

t
ds.(t) = /A e F i) ki dds
t—At

t
enlt) = / o d W, (5)
t—At



36

Note that dj,(t) does not depend on ¢, which can be easily confirmed by
integrating or using changes of variables.
The z(t) can be expanded as follows.

n

! 1
2(t) = Pyt — At) + / eb(t=9) (Z ar — 5 Z ami) ds
t—At

=1 =1
n

t
- Z a; / e =9)5,(s)ds
N

=1
n

t
SY o [ ()
t— At

=1

t n 1 n
_ bAt b(t—s) ) -2
= e z(t—At)+/ e ay + a;r — = a;oq |ds
Z / Ri(s—t4O0) g g

=

x(ie v 1"%“( (t—vAt)—l—asi(t—vAt)))

S

=

[
+/tAt/6 )i g dsd W, (u)
|

b(t—s)—k;(s—t+At) A

—e a;ds

n t

+ a; tsO’gdWs()

=1

where we use Fubini’s theorem for stochastic integrals and

t
/ e?=95,(s)ds
t— At
t
— / 6b(t—s) ki (s—t+At) 5( At) _|_€ b(t— s) & eb(t—s)—m(s—t—l—At)&idS
t

— At
t t
t—NAt Ju
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Thus, from e*~t < 1,

o0

A(t) = D ePBd(t — sAL) + e (t — sAL))

s=0

+D N et M L (t — (s 4 v + 1) At),

s=0 v=0
where
t n 1 n
d,(t) = / et=5) Z a;r — — a;oz. |ds

t-At i=1 2 i=1

n t 00

. Z az/ eb(t—s)—n (s—t-l—At)dS Z 6—(v—1)n At g (t _ UAt)
=1 JtoAt v=1

n t
. Z a; / eb(tis)OAéi _ eb(tfs)fni(sfﬂ»At)didS
= Ji-nt
t t
ealt) = / / btt=s)=rils=w) 5o dsdW;, (u)
t—At Ju
n t
+ Z a; / Gb(tis)O'Si dWSl (S)
= Ji-nt
n t
£n(t) = — Z a; / =) =rils=t+AD goes (1),
= Ji-nt

Again, d,(t) does not depend on t and €,,(t) and £,5(t) are white noise.
From Proposition A.2, we can see that z(t) is stationary. Therefore, In S;(t)
is cointegrated.



Next, we check that In S;(t) — In S;(t — At) is 1(0) for every i.
In Sl (t) —In Sz (t — At)

¢ 2 ¢
= / (r — % — 0;(s) + biz(s))ds +/ 05, AW, (s)
t—At t—=At

o t
= s, + E ( _ / 6—m(s—t+At)dS> e—smAthi (t . (S + 1)At)
=0 t—At

+be" ST AL ( Z ePBle, (t— (5 +1)At)

s=0

+ Z Z esbAtvaAtgzz (t _ (5 + v+ Q)At)>

s=0 v=0

n s
—b; Z a; / / eb(sfu)fnj (uft+At)dudS
— t— At Jt—At

(Ze v— ln,At _ UAt)) + €ms; (1),

where

o t
Hins;, = J— /N a; A\t + & / o Fils—t+A) g
2 t—At

n

n ' a .0-2‘ t s
+b; Z a;r — M / / e’ duds
. 2 t—ot Jt-At

- Za]a]/ / (s—u)(1 _ e—nj(u—t-l—At))dudS
At Jt At

t

o0

_/ —rils— t+At)dSZ TSRAL (s (t— (s + 1)At))
t— At

s=0
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+bie? At ( > et (s + 1)At)>

s=0

n t s
_bi by / / eb(s—u)—nj(u—t—l—At) duds
jz; ! t—At Jt—NAt

v=1

t t s
€ins; = / / / €b(s_u)_ni(u_v)05i dudeW(;l (U)
t—AtJv Ju

n t t
+3 a / / Vg, dsdWs, (u)
j=1 t—AtJu
t

+/ O'SidWSi(S).
t—At

tin s, does not depend on time ¢ by using changes of variables. Further-
more, note that the stochastic terms are white noise. Therefore, we can use
Proposition A.2, which concludes that In S;(t) — In S;(t — At) are I(0). This
completes the proof.

Appendix 4 Other Empirical Results for the GSC Model

In this subsection, we show the empirical results for the other cases: (i) b # 0
and a; =1, (ili) b= 0,a; = 1,by = —agbs, (iv) b =0,a; = 0,a = 0, and (v)
b=20,a; =0,by = 0. The estimation results are presented in Tables 6 and 7.
Except for case (iii), we see that the AIC is lower than that in the GS model.
Furthermore, we analyze the result of case (iv), because this case has the
lowest AIC, including case (i) b # 0 and a; = 1 and the GS model. Recall
that this case does not satisfy the condition of cointegration and, thus, the
estimated parameters are not valid, which means these are not comparable
to standard deviations.

For case (iv), in which the linear relation vectors a; are both 0, the adjust-
ment speeds are [by, by] = [—0.109099, 0.095277], respectively. The standard
deviations for these parameters are very large. The time drift parameters ag
and g, are 0.000001 and 0.012542, respectively.

Let us turn to the convenience yields. Note that x, is negative, which
means that the convenience yield is not stationary. Both long-term means
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«; are small compared with the standard deviations, but the adjustment
parameters k; are larger than the standard deviations.

A comparison of case (i) and the GS model does not reveal any significant
differences between the volatility parameters. The differences we indicate are
between the volatility parameters of the heating oil convenience yield oy,,
correlations of heating oil price and crude oil convenience yield pg,s,, and
correlations of the convenience yields ps,s,. 05, for case (iv) is much less
volatile than the two previous models. The correlations pg,s, and ps,s, are
lower.

Tables 8 and 9 show the root mean square error (RMSE) and mean error
(ME) of the four cases. A comparison of the GS model and case (i) indicates
that the result of heating oil for maturity 1 is not good, although maturity
5 is somewhat improved; there is no significant improvement or depreciation
in the other parts.
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Table 6: Estimated parameters, with standard errors in parentheses. Data
are WTT and heating oil daily closing prices traded on the NYMEX from

January 2, 1990, to July 30, 2010.

(i)

(iii)

Volatility parameters

os, 0.366667 (0.001942)  0.368996 (0.004328)
oS, 0.403866 (0.002648)  0.356059 (0.005757)
05, 0.292311 (0.001850)  0.198031 (0.003283)
05, 0.689807 (0.007995)  0.211847 (0.005608)
PS1 S5 0.714434 (0.005201)  0.858236 (0.007080)
PS8, 0.737688 (0.004359)  0.002200 (0.020520)
PS16o 0.000051 (0.012178)  0.000382 (0.056260)
PSs61 0.528267 (0.006447) -0.050049 (0.020261)
PSo5, 0.651368 (0.007394)  0.388430 (0.052287)
05,65 0.109110 (0.013473)  -0.000335 (0.001343)
Convenience yield parameters
K1 1.142947 (0.007264)  0.886730 (0.005096)
K2 1.256849 (0.016329)  0.026644 (0.029419)
a1 0.019111 (0.002216)  0.076056 (0.003200)
Qo 0.013057 (0.014289)  0.016721 (1.041906)

Linear relation parameters

- 0.023941 (0.045201)  -0.022223 (1.966758)
ao 0.000106 (0.000003)  0.006951 (0.005982)
ay 1.000000 (n.a.) 1.000000 (n.a.)
as -0.725814 (0.007109)  -0.008302 (0.009216)
by 0.052334 (0.002303)  -0.000572 (n.a.)
by 0.366034 (0.005675)  -0.068889 (0.035397)

Market price of risk parameters

05,0 0.199469 (0.222492)  0.082667 (0.330452)
05,0 -0.233062 (0.233117)  0.185452 (0.339923)
05.0 0.011876 (0.230454)  -1.799341 (0.332545)
05,0 0.006551 (0.273943)  -0.004155 (0.810891)
R(1,1) 0.000515 (0.000005)  0.000919 (0.000013)
R(2,2) 0.000000 (0.000000)  0.000030 (0.000001)
R(3,3) 0.000009 (0.000000)  0.000001 (0.000000)
R(4,4) 0.000000 (0.000000)  0.000002 (0.000000)
R(5,5) 0.000021 (0.000001)  0.000007 (0.000000)
R(6,6) 0.000001 (0.000001)  0.006362 (0.000168)
R(7,7) 0.001022 (0.000030)  0.000895 (0.000023)
R(8,8) 0.000696 (0.000022)  0.000015 (0.000001)
R(9,9) 0.000008 (0.000000)  0.000000 (0.000000)
R(10,10) 0.001017 (0.000028)  0.000766 (0.000018)

Log-likelihood
AIC

sample size

154178.537078
-308291.074155
51590

151160.610135
-302257.220269
51590




Table 7: Estimated parameters, with standard errors in parentheses.
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Data

are WTT and heating oil daily closing prices traded on the NYMEX from
January 2, 1990, to July 30, 2010.

(iv) (v)
Volatility parameters
os, 0.350206 (0.001866) 0.336697 (0.001782)
05, 0.329622 (0.003536) 0.313910 (0.002938)
os, 0.265981 (0.002176) 0.242048 (0.002008)
Os, 0.244615 (0.005482) 0.205013 (0.004326)
PS15, 0.625170 (0.008841) 0.685699 (0.008048)
PS5, 0.758072 (0.004341) 0.715504 (0.005356)
PS1 6, -0.000129 (0.011527) -0.000452 (0.013543)
PSy6, 0.347681 (0.009722) 0.351016 (0.010844)
PS5, 0.645149 (0.010296) 0.589559 (0.011140)
P5155 0.017574 (0.011490) 0.002437 (0.013464)

Convenience yield parameters

K1

0.949412 (0.005239)
-0.231644 (0.017156)
0.016148 (0.051007)

0.014541 (0.191621)

Linear relation parameters

Mz
ao
aj
a2
b1
ba

0.012542 (12.485066)
0.000001 (0.000519)
0.000000 (n.a.)
0.000000 (n.a.)

-0.109099 (108.382591)

0.095277 (94.836457)

Market price of risk parameters

fs.0
05,0
05,0
05,0

EEEEEEEEE

O@OO\I?UT%OJN)H
= © 00 O Ui W N
O\_/\_/\/\/\_/\_/\_/\/\/

=

)

Log-likelihood
AIC

sample size

0.005576 (0.235339)
0.026724 (0.252499)
-0.093062 (0.248346)
-0.000270 (0.380532)

0.001041
0.000046
0.000000 (0.000000
0.000000 (0.000000

(0.000016
(
E
0.000009 (0.000000
(
(
(
(
(

0.000001

0.006745 (0.000173
0.001100 (0.000028
0.000000 (0.000000
0.000000 (0.000000
0.001038 (0.000027

~— e e o e ~—

154897.735778
-309731.471557
51590

0.951637 (0.005549)
-0.345426 (0.019500)
0.007442 (0.043916)
0.149694 (0.009358)

0.024759 (2.826261)
-0.000066 (0.006340)
0.000000 (n.a.)
-0.130021 (12.499299)
0.030849 (2.963343)
0.000000 (n.a.)

0.002583 (0.222497)
0.371485 (0.242683)
-0.560535 (0.232429)
0.000262 (0.383377)

0.001124
0.000051
0.000000
0.000000
0.000008
0.006392
0.001091
0.000002
0.000002
0.001113

0.000018
0.000001
0.000000
0.000000
0.000000
0.000162
0.000029
0.000000
0.000000
0.000031

Py
NN N N S e N N N

154743.996275
-309423.992550
51590
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Table 8: RMSE (root mean square error) and ME (mean error) for each

futures contract.

Contracts RMSE ME
Models (ii) (iii) (ii) (iii)

Crude oil

Maturity 1 0.032943 0.038575 -0.002741 -0.002193
Maturity 3 0.020206 0.021061 -0.000003  0.000400
Maturity 5 0.018556 0.018369 0.000026 -0.000083
Maturity 7 0.017296 0.017350 -0.000030 -0.000495
Maturity 9 0.017152 0.016782 0.000170 -0.000185
Heating oil

Maturity 1  0.024064 0.082284 0.000023 -0.000638
Maturity 3 0.037136 0.035022 -0.001603  0.000271
Maturity 5 0.031699 0.018464 -0.000226  0.000495
Maturity 7 0.017767 0.017380 -0.000012 0.000711
Maturity 9 0.036419 0.035860 -0.003012 0.001615

Table 9: RMSE (root mean square error) and ME (mean error) for each

futures contract.

Contracts RMSE ME
Models (iv) (v) (iv) (v)

Crude oil

Maturity 1 0.039733 0.039573 -0.003794 -0.003158
Maturity 3 0.021257 0.021247 0.000062  0.000170
Maturity 5 0.018388 0.018378 0.000443  0.000248
Maturity 7 0.017312 0.017300 0.000412  0.000159
Maturity 9 0.016819 0.016791 0.000619  0.000544
Heating oil

Maturity 1  0.084311 0.082893 -0.001628 -0.010059
Maturity 3 0.037614 0.037121 -0.000298 -0.003341
Maturity 5 0.018668 0.018706 0.000332 -0.000079
Maturity 7 0.017853 0.017942 0.000348 -0.000137
Maturity 9 0.037304 0.038042 -0.000148 -0.003425
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