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In this paper, we theoretically analyze price of emission allowance.
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1 Introduction

Since the EU Emission Trading System (EU ETS) was launched in October
2003, the European Energy Exchange (EEX), European Climate Exchange
(ECX), Powernext, Chicago Climate Exchange (CCX), and New York Mer-
cantile Exchange (NYMEX) began trading EU allowances (EUAs), certified
emission reductions (CERs), and their derivatives. The trading volumes in
these markets are increasing as the EU ETS expands; therefore, the pricing
of emission allowances is becoming an important issue.

In the academic literature, Cronshaw and Kruse (1996), Rubin (1996),
Schennach (2000), Fehr and Hinz (2007), Seifert, Uhrig-Homberg, and Wag-
ner (2008) investigated theoretically the prices of emission allowances. These
studies focused on describing the univariate properties of emission allowance
prices in terms of abatement costs, but did not examine the relations between
prices of emission allowances and other commodities. In contrast, some em-
pirical papers, such as Bunn and Fezzi (2007) and Mansanet-Bataller, Pardo,
and Valor (2007), found relations between futures prices of commodities such
as emission allowances, electricity, natural gas, and temperature. These re-
sults suggest the need for a model that incorporates price relations between
emission allowances and other commodities.

Studies also exist on derivatives of emission allowances. Chao and Wil-
son (1993) assumed a fixed supply of and stochastic demand for allowances,
and derived an explicit valuation formula for options on emission allowances.
Maeda (2001) presented a forward pricing model of emission allowances with
and without banking. Kijima, Maeda, and Nishide (2010) built a pricing
model of emission allowances in a general equilibrium framework. Chesney
and Taschini (2009) proposed a model under asymmetric information that al-
lowed intertemporal banking and borrowing, and derived a closed-form pric-
ing formula for a European option. Daskalakis, Psychoyois, and Markellos
(2009) studied the spot and futures markets of emission allowances with sev-
eral price processes including a mean reverting square-root process and jump
process, and addressed the difference between interphase and intraphase mar-
kets. Again, these studies only considered the emission allowance price, and
did not model explicitly the relations between commodity prices.

In this paper, we characterize the price of emission allowances by incorpo-
rating the interrelations between emission allowances and other commodities.
More precisely, we focus on a situation where operational fuel switching is
the main source of emission reductions and where the prices of emission al-
lowances and fuel are related through optimal fuel switching by producers
(e.g., power companies). We assume that there are two kinds of fuel (e.g.,
natural gas and coal') by which one kind of good (e.g., electricity) is pro-

!Natural gas is more expensive but has a lower carbon content than coal.



duced with emissions of CO, as a by-product. We also assume that emission
allowances are traded in a system similar to the EU ETS. That is, emission
allowances are traded in a certain predetermined period, and compliance with
the reductions is required at the end of period with a penalty for violation.

In this situation, the profit-maximization of producers leads to inter- and
intratemporal conditions on prices of emission allowances and fuels. The for-
mer requires that the emission allowance price at any date should be equal
to the present value of the emission allowance price at the end of the trad-
ing period. The latter requires that the marginal cost of fuel and emission
allowance per unit of production should be equal across all kinds of fuels.
Imposing these conditions, taking account of the penalty, and assuming that
fuel prices follow Gibson—Schwartz-type (1990) stochastic processes, we pro-
vide a valuation formula for the emission allowance price in terms of a spread
between fuel prices with the penalty.

It is worth noting that many other factors may affect the emission al-
lowance price but are not incorporated in our analysis; such factors include
demand for emission allowances from other industries, investment in abate-
ment technologies, asymmetric information on emission reduction, uncer-
tainty of institutional change, and so on. In reality, these factors can also be
important determinants of emission prices. However, by focusing on the rela-
tion between operational fuel switching and the emission allowance price, we
are able to characterize explicitly at least a part of the emission allowance
price in terms of a spread between fuel prices with the penalty. In other
words, we obtain an approximation of the emission allowance price that can
be described by observable variables, i.e., prices of tradable commodities.
This allows us to value emission allowances in part but in a tractable way.

This paper is organized as follows. In Section 2, we characterize the spot
price of emission allowances as a derivative of a spread between fuel prices
with the penalty. We also analyze the option values embedded in emission
allowances and derive valuation formulae for futures and options on emission
allowances. Using these valuation formulae, in Section 3, we characterize a
hedging strategy of emission allowances using commodity futures. In Section
4, numerical analyses are provided. Section 5 concludes.

2 Prices of Emission Allowances and Their
Derivatives

2.1 The Setup

Let us consider an economy that has a CO, emission trading system similar
to the EU ETS. That is, the emission allowance of CO, is traded and its



cumulative amount of emissions in period [0, T] is required to be less than
a certain limit. Excess emissions over the limit are penalized at the end of
period 7" and emission allowances are traded throughout the period [0, 7.
In this economy, we are interested in characterizing the price of emission
allowances. For this purpose, we focus on the relation between the emission
price and operational fuel switching.

To be more concrete, assume that there is a competitive power company
that generates electricity by burning two kinds of fuel, such as natural gas
and coal, while emitting CO4 as a by-product. Assume for simplicity that
this company is the dominant player in the economy and that its power-
generating activities determine the relative prices of emission allowances,
electricity, natural gas, and coal. Assume also that this power company
already has adequate facilities to satisfy electricity demand by using either
natural gas or coal as fuel, does not invest in new facilities in the period
[0, 7], and decides which fuel to use to generate electricity depending on the
prices of electricity, fuel, and emission allowances.

In this situation, it is well known that profit-maximization of the power
company requires prices of electricity, fuel, and emission allowances to satisfy
both intertemporal and intratemporal conditions. The former requires that
the emission allowance price at the interim date ¢(< T') should be equal to
the present value of the emission allowance price at the end of period T.2
The latter requires equality between marginal revenue of output (electricity)
and marginal cost of input (fuel and emission allowances), which leads to an
expression of the allowance price as a spread between fuel prices. In the fol-
lowing, we utilize these inter- and intratemporal conditions and characterize
the price of emission allowances in terms of fuel prices.?

Denote by Se(t) the spot price of emission allowances at (< T') and
by Se(T') the price at T. The intertemporal condition that the emission
allowance price should satisfy is

Se(t) = Efe"05.(T)] (1)

2This is because emission allowances are needed only at the end date T when the central
authority checks the companies in order to penalize any offenders. Thus, if the emission
allowance price at t(< T') is lower (resp. higher) than the present value of the price at
T, the companies can increase their profits by adopting a trading strategy to buy (resp.
sell) allowances at ¢ and to sell (resp. buy) them back at 7', which contradicts their profit
maximization. See also Nakajima and Ohashi (2010).

3By making the strong assumption that these conditions apply to the emission al-
lowance price such that it can be expressed in terms of fuel prices and the penalty and by
ignoring other factors that may affect the emission allowance price, we are able to char-
acterize explicitly the relation between the emission allowance price, fuel prices, and the
penalty; this enables us to value the emission allowance in a tractable way. We assume
that this model approximates the emission allowance price on some level.



where E[-| is expectation under risk-neutral probability P. Thus, to derive
the emission allowance price S.(t), we need to know its value S,(T") at T,
which we obtain from the intratemporal condition.

Let us denote by Z the per-unit penalty for excess emissions over the
limit 7. We assume that Z is constant. Let us also denote by S;(¢) (resp.
So(t)) the price of fuel 1 (resp. 2) at date ¢. Then, if Z is sufficiently
large so that it is not binding, the intratemporal condition, or the equality
of marginal costs for fuel and emission allowances, leads to the equality of
the allowance price and a spread between fuel prices at T.* Denote this
spread by H,S1(T) — HyS5(T), where we assume H; and H, are constant for
simplicity. On the other hand, if the spread is larger than the penalty Z,
i.e., H1S1(T) — HyS2(T) > Z, the emission allowance price cannot be equal
to the spread; otherwise, some financial institutions will short sell emission
allowances and pay the penalty Z that is less than the spread or the emission
allowance price. Hence, the penalty Z sets the upper bound of the emission
allowance price at 7. Furthermore, the emission allowance price cannot be
negative. Thus, the emission allowance price at 1" is given by

Se(T) = [{H1S1(T) — HyS2(T)} N Z] VO (2)

where a A b = min{a, b} and a V b = max{a, b}.

Finally, to describe the spot commodity prices, we assume that commod-
ity prices follow the Gibson-Schwartz (1990) model. That is, for a filtered
probability space (2, F, {F;}i>0, P), we assume that the fuel prices S;(t) and
convenience yields ¢;(t) satisfy the following stochastic differential equations.

dS;(t) = Si(t)(r — 4(t))dt + Si(t)os,dWs,(t) (3)

where W are four-dimensional standard Brownian motions under the risk-
neutral probability.’

To summarize, we assume three conditions. The first is the intertemporal
condition that emission allowances at time ¢ are the present value of the
emission allowances at the end of period 7. The second is the intratemporal
condition that the emission allowance spot price at the end of period T" should

4This can be understood intuitively as follows. Let hy (resp. hs) be the amount of fuel
1 (resp. 2) necessary for producing one marginal unit of electricity. Let ki (resp. k2) be
the amount of CO2 emissions associated with burning one marginal unit of fuel 1 (resp. 2).
Then, the equality of marginal costs implies h1 S (T) + h1k1Se(T) = hoSo(T') + hokaSe (T),
which leads to S.(T) = M(hlsl (T") — haS2(T)). See Nakajima and Ohashi (2010)
for more general cases.

5The volatility structure is given in the Appendix.



be positive and equal to the minimum of the spread of the two fuel prices and
the penalty. The last is that commodity prices follow the Gibson—-Schwartz
model.

2.2 Spot Price of Emission Allowances

Under the assumptions above, we can derive the spot price of emission al-
lowances as follows.

Proposition 2.1.

Under assumptions (1)—(4), the spot price of emission allowances is given
by

Se(t) = Hi(t,T)Si(t) — Ha(t,T)So(t) + Hs(t,T)Z (5)
where H;(t,T) are defined in the Appendix.

Proof. The proof is in the Appendix. O

Thus, if fuel switching by producers is the main factor of the emission
allowance price, and if we can regard other factors as negligible, the emis-
sion allowance price is expressed as a spread of fuel prices with the penalty
appropriately discounted.

Observe, however, that the spread relation is not simple: even if the
coefficients (H; and Hj) on fuel prices in the spread are constant at the end
of trading period T, the corresponding coefficients (Hi(¢,T) and Hy(t,T))
in the spread that determines the emission allowance price in (5) are not
constant and depend on the stochastic properties of fuel prices as well as
time to maturity. Indeed, H;(t,T) (resp. Ha(t,T)) can be interpreted as H;
(resp. Hy) multiplied by the discount factor and the risk-adjusted probability
of the spread H,S;(T) — HyS5(T") of fuel prices between 0 and Z at date T

One implication of this expression is that the emission allowance spot
price may inherit stochastic properties from the fuel prices. For example,
while the coefficients (H,(t, T) and Hy(t, T)) are changing stochastically over
time, if the fuel prices exhibit convenience yields, the emission allowance price
may also exhibit a convenience yield through the spread relation in (5).

The emission allowance price also depends on the penalty Z multiplied
by ﬁg(t, T) because the producers have the option of emitting any amount
of COy by paying the penalty Z per unit of emission at date 7. Here, the
coefficient H(¢,T) can be interpreted as the adjusted discount factor that
consists of the risk-free discount rate multiplied by the risk-neutral proba-
bility that the spread H;S:(T) — HySo(T) of fuel prices exceeds Z at date
T.



This result implies that the value of emission allowances can be replicated
by holding H (¢, T) units of fuel 1, short-selling Hy(¢,T) units of fuel 2, and
holding H 3(t, T)Z units in risk-free assets at date . Hence, a power company
can control its exposure to emission allowance price risk by using this formula
to adjust its position on fuels. We discuss the hedging strategy in the next
section.

2.3 The Option Value Embedded in the Emission Al-
lowance Spot Price

From equations (1) and (2), the value of the emission allowance can be repli-
cated by a portfolio of buying 1 unit of European call options with exercise
price 0 on the spread H;S,(T) — HyS2(T) at the maturity date 7" and sell-
ing 1 unit of European calls with exercise price Z on the spread. That is,
the emission allowance is the bull call spread of the options on the spread
H,S,(T) — HyS2(T) at date T.

In this section, we analyze the values of these embedded options in more
detail. For this purpose, we first derive the valuation formula for the emission
allowance spot price when the option to emit CO, by paying penalty Z is
ignored, or when Z is taken to be infinite, as follows.

Proposition 2.2. Define
S\(t) = Efe "TO((H,S\(T) — HySy(T)) v 0)].
Then
g

e

(1) = Hi(t,T)Si(t) — Hy(t,T)Sa(t) (6)

where

H{(t,T) = Hyexp { —r(T—t)+ px, (t,T) + %a/‘él (t, T)}(l — ®((t,7)))

Hy(t,T) = Hsexp { —r(T —1t)+ px,(t,T) + %aiz(t, T)}(l — ®(f12(t,T)))

where ®(-) is the standard normal distribution function.

Proof. The derivation is similar to that of Proposition 2.1 and hence we
omit.° O

6The proof is provided upon request.



Notice that equation (6) can be regarded as the present value of the
maximum of the spread of two commodity prices and 0 at the end of period
T. Thus, the embedded option value for penalty Z of the emission allowance
spot price is expressed by the difference between S’ (t) and S,(t).

Corollary 2.1. The option value of penalty Z embedded in the emission
allowance is given by

Se(t) —SL(t) = exp {—T(T —t) 4+ px, (t,T) + %a%h (t, T)} H, S, (t)Ey

1
—exp {—r(T —t) + px, (6, T) + 505(2 (, T)} HyS5(t)Ey

+Hs(t, T)Z
where
B = — [ diom 2t T) + 0 (T),0%,(0.T))ds
E2 = _/ (I)(—dz(l'g,Z))n($2|ﬂx2(t,T)—|—0'§(2(t,T),0'§(2(t,T))d!E2.

2

and n(-|u,0?) is the normal density function with g and o? as mean and

variance, respectively.

This is the value of the option to emit any amount of COs by paying
penalty Z when the spread H;S,(T) — HyS5(T) exceeds Z. From this corol-
lary, we can see that the option value for penalty Z embedded in the emission
allowance spot price is affected not only by penalty Z, but also by S;(¢) and
Sy(t) through E; (=1,2).

Similarly, if the investor (mis-)values the emission allowance spot price
just as the spread of two commodity prices, he/she will be subject to the
next equation.

Proposition 2.3. Define
Sg(t) = Et[eir(Tit) (Hlsl (T) — HZSQ(T))]
Then

SY(t) = exp { —r(T—1t)+ px, (8, T) + %aiﬁ (t, T)}Hlsl(t)

—exp { —r(T —t) + px, (£, T) + %a?Q (t, T)}HQSz(t).



Proof. The formula for S!(¢) is obvious by the linearity of expectations. O

Equation (7) is merely the present value of the spread of two commodity
prices. Comparing equation (7) with S’(¢), we have the following result.

Corollary 2.2.
Se(t) — SC ()

= —exp { - T(T o t) + Hxy (tv T) + %Ugﬁ (t7 T)}Hlsl(t)q)(ﬂl(tv T))
+exp { - T(T o t) + Hx, (tv T) + %Og(z (t7 T)}H252(t)q)(ﬂ2(tv T))

Thus, the option value of emission allowances against the spread of the
two commodity prices can be decomposed into two components. The first
component S,(t) — S.(t) is the option value of the emission allowance for
penalty Z and the second component S’ () — SY(t) is the option value of the
emission allowance for exercise price 0.7

2.4 Derivatives of Emission Allowances

Given the spot price, we can derive the prices of emission allowance deriva-
tives. First, we calculate the emission allowance futures price in the following
proposition.

Proposition 2.4. The futures price for an emission allowance that matures
at T is

Ge(t, T) - Et[se(T)]
= E[((H\S\(T) — HySo(T)) A Z) V (]
" TOH (1, T)S1(t) — e TV Hy(t, T)Sa(t) + ¢V Hy(t, T) Z.

Proof. The first equation is from Cox, Ingersoll, and Ross (1981). The proof
for the third equation is the same as Proposition 2.1. O

Next, we obtain the valuation formula for a European call option of emis-
sion allowances.

"From another point of view, S, (t)—S’(t) and S, (t)—S () = S.(t)—S.(t)+S.(t)—S" ()
can be interpreted as pricing errors for the emission allowance price when ((H;S1(T) —
HQSQ(T)) A Z) V 0 is replaced by (H151(T) — HQSQ(T)) V0 or HlSl(T) — HQSQ(T), ie.,
when the investor misprices the emission allowance spot price at the end of period T'.
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Proposition 2.5. Suppose Z > K > 0. The option price for the emission
allowance that matures at 1" is

Co(t,T) = Ei[e™T(S.(T) — K)*]
E e ((H18/(T) — H2S5(T) — K) A (Z = K)) V 0)]
= H(t,T)S(t) — Hy(t,T)Sy(t) — Hs(t, T)K + Hy(t, T)Z

where
H,(t,T) = Hexp { —r(T—t)+ px, (t,T) + %03(1 (, T)}
< [ (@2, 2)) = @l a2, )
Xn(x2|:qu (tv T) +TOx, X, (tv T)a U§(2 (tv T))de
Hy(t,T) = Hyexp { — (T —t) + px,(t,T) + %o&z(t, T)}
< [ (@la(rs 2)) ~ (dafo, )
xn(x2|px, (8, T) + 0%, (t,T), 0%, (t,T))dx,
H;(t,T) = exp(—r(T —1)) /oo (D(dy(22, Z) — D(dy(22, K)))
Xn(x2|:uX2(tv T),U§(2 (tv T))de
Hy(t,T) = eXP(-?”(T—t))/_ (1 = ®(da(2, Z)))n(@2|px, (8, T), 0%, (£, T))day

Proof. Again, the derivation is similar to that of Proposition 2.1 and hence
we omit.? ]

Trivially, if Z < K then the option price is 0, and if K < 0 then the
option price is the same as the emission allowance spot price.

As the penalty is paid at the end of period T, a firm such as a power
company that needs to hedge the penalty will naturally focus on the payment
at time T. Therefore, derivatives of the emission allowances that mature at
T should be adequate for risk hedging. Note also that these derivatives are
derivatives on a derivative on the spread of two commodities.

8The proof is provided upon request.
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3 Hedging Emission Allowances Using Com-
modity Futures

Equation (5) shows that the value of emission allowances at date ¢ can be
replicated by holding H (¢, T) units of fuel 1, short-selling Hy(t,T') units of
fuel 2, and holding I:I3(t, T)Z units in risk-free assets at date ¢. It turns out,
however, that obtaining a hedging strategy to replicate emission allowances
from this relation is a difficult task because of the dependency of coefficients
H;(t,T) (i =1,2,3) on the commodity prices and the time to maturity.

On the other hand, because the compliance of emission reductions is
checked and the penalty is paid only at the end of period T, a firm that needs
to hedge the penalty only has to care the payment to emission allowances
at time 7. Thus, the derivatives of emission allowances that mature at T
should be enough for its risk hedging. Moreover, the commodity futures can
be traded more easily than their spots. Hence, in this section, we investigate
the hedging strategy to replicate the emission allowance futures with maturity
T by using the commodity futures with the same maturity.

We can derive the hedging strategy for the emission allowance futures as
follows.

Proposition 3.1. Assume (1)-(4). The hedging equation for emission al-
lowances using commodity futures is

dG.(t,T) = ¢p(t)dB(t) + ga, ()dGy(t,T) + a, (1)dGa(t, T)

where the hedging strategies are

~

OH, (1, T OH,(t, T OH(t, T
onlt) = {%Gmt, 1)~ D) 61, 1) 4 72T
. Z Gi(tT)  PH(LT)  GUT)  PH(LT)
720G, (L TG T) 2 0G;(t, T)IGH(t,T)
7 0H(t,T)
+5 an(t, T)aGk(t, T) USjSij(ta T)Gk(ta T)
1— e—nk(T—t) 1— e—nj(T—t)
_USijH—ij(t7 T)Gk(t, T) — USkéj H—GJ (t, T)Gk(t, T)
J

1 — e—nj(T—t) 1 — e—nk(T—t)
+06j6k ( )( )Gj(ta T)Gk(taT)>

RjKE
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8ﬁl(t,T) o 1 — e—r(T—t) )
PR pm— Gi(t,T)—2 G2(t. T
8G1(t,T) (Usl 1( ’ ) T8161 K1 1( ) )
1 — e—r1(T—1))2
+a§1( ‘ 5 ) G%(t,T))
K1
8]?[ t,T 1 6—52(T_t)
% <05152G1 (t, T)GQ(ta T) — 08,6 g G1 (t, T)Gz(t7 T)
1 _ eflﬁl(Tft)
— 08,5, H—Gl(t,T)GQ(t,T)
1
1 — e w(T=1) (1 — p—r2(T—t)
+06152( € )( (& )Gl(t,T)Gz(t7T)>
K1K9
Ot T) (5 | et
e " t,T)—2 t T
3G (1, T) (”S2G2( 1) = 20500 ————G5(1,T)
1 — —k2(T—t)\2
+U§2( ° 2 ) G%(t,T))
K
Gl-if t,T 1 — e—r2(T—1)
_ﬁ (05132G1(t, T)Gy(t,T) — 03,0, FG—QGI(t’ T)Go(t,T)
1 — e—r(T=1)
—05,5, H—Gl(t,T)GQ(t,T)
1
1 — e m1(T-1)) (1 — g—H2(T—1)
+0'6152( (& K)Ii € )Gl(t7T)G2(t,T)> }(TB(t))—ldt
172

~

OH,(1,T) OHs (1, T) _
— ———=Gi(t, T (t, T — 2 7dG;(t,T), 1 =1,2
Z aGZ (t, T) G] (t7 )dGl (t7 ) + 8GZ (t, T) dGz (ta )7 ? 9

Proof. The proof is in the Appendix. O

Note that because the spot price of emission allowances is equal to their
futures price at maturity, an investor, say a power company, that needs to
hedge the allowance at maturity can satisfy its need by hedging its futures.
The advantage of hedging the futures is that we need to use only two fu-
tures of the commodities with the same maturity as the emission allowance
futures. With the same maturity, there is no convenience yield and we do
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not need to control it using other commodity futures. This greatly simplifies
the calculation.

4 Numerical Analysis

We conduct a numerical analysis assuming the following parameter values.
The spot prices of natural gas and coal are 10 and 70 euros, respectively,
with no convenience yield at time t. The heat/emission ratios H; and Ho
are 10 and 0.50, respectively. The penalty is 100 euros and the period is set
to one year. The volatilities of the spot prices of natural gas and coal are
0.40 and 0.50 and the volatilities of the convenience yields are 0.40 and 0.30,
respectively. The other parameters are summarized as follows.

S1(t) = 10, Sy (t) = 70,

d1(t) = 0.00, 5>(¢) = 0.00,

og, = 0.40, 05, = 0.50, 05, = 0.40, 05, = 0.30,
psys, = 0.90, ps,5, = 0.10, pg, 5, = 0.00,

ps,s, = —0.20, pg,s, = 0.10,

ps,8, = 0.00,

k1 = 2.00, ko = 1.00,

a; = 0.10, as = 0.30,

T=1,7=100,r = 0.04,

H, =10, Hy = 0.50.

Figure 1 illustrates theoretical emission allowance spot prices S,(t), S.(t),
and S”(t). Commodity spot price S;(t) affects the emission allowance spot
price more than commodity spot price Sy(t) does. This is because H; is
larger than H,. Comparing S.(t) with S.(¢) and S”(t), S.(t) is consistently
lower than S!(t) and S”(t) because the emission allowance spot prices have
the upper limit Z. Furthermore, the differences between S.(¢) and S.(t) or
S”(t) are relatively large compared with that between S.(¢) and S7(¢). This
suggests that ignoring the option value of the penalty leads to larger errors
than ignoring the nonnegativity of the emission allowance spot price.

The sensitivity of the emission allowance spot price to og, and og, is
shown in Figure 2. Because the emission allowance is a spread option, its
sensitivity to volatility of spot prices differs from that of a plain vanilla option.
In our case, as og, increases, the emission allowance spot price decreases, and
0s, has the opposite effect. These effects vary when the volatility structure
changes. Furthermore, note that as og, increases, the value of embedded
options decreases. However, as og, increases, the value of embedded options
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Figure 1: Sensitivity of the emission allowance spot price to commodity spot
prices. The lowest, highest, and middle surfaces represent the theoretical
emission allowance spot prices S,(t), SL(t), and S”(t), respectively.
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increases. and this increase in value is much larger than the decrease in
value for og,. This is because HyS;(t) is larger than H»S5(t) and there is
more room for the value H;S(t) to fluctuate.

Emission Allowance Spot Emission Allowance Spot

60
55//

50

35 1 4

Figure 2: Sensitivity of the emission allowance spot price to og, and og,.
The solid line, the dashed line, and the chain line represent the theoretical
emission allowance spot prices S,(t), SL(t), and S”(t), respectively.

Figures 3 plot the price of the commodity spread option with o5 and
0s,. For o4, the emission allowance spot price S,(t) is an inverted U-shaped.
Meanwhile, as o0y, increases, the emission allowance spot price decreases.

Emission Allowance Spot Emission Allowance Spot
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0.1 0.2 03 0.4 05 0.6 0.7 08 09 0.1 0.2 03 0.4 05 0.6 0.7 08 09
%1 %2

Figure 3: Sensitivity of the emission allowance spot price to o5 and oy,.
The solid line, the dashed line, and the chain line represent the theoretical
emission allowance spot prices S¢(t), S.(t), and S”(t), respectively.

The results for the long-term mean of the convenience yield &; are pre-
sented in Figure 4. As the long-term mean ¢&; of the convenience yield for
commodity 1 increases, the emission allowance spot price decreases. This
is true for S.(t) and S, (t). Observe that the emission allowance spot price
converges to 0 when ¢&; increases. This can be explained in terms of the
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dividend rate. If the long-term mean of the dividend rate increases, the price
will fall more steeply after the ex-dividend date. Because the convenience
yield can be regarded as the dividend rate, the same reason applies. On the
other hand, the emission allowance spot price increases as s increases. This
is because HyS5(t) affects the emission allowance price negatively.

Emission Allowance Spot Emission Allowance Spot

Figure 4: Sensitivity of the emission allowance spot price to a; and as. The
solid line, the dashed line, and the chain line represent the theoretical emis-
sion allowance spot prices S,(t), S.(t), and S¥(t), respectively.

Figure 5 shows the sensitivity of the emission allowance spot price to ;.
Both k; have the same effect on the emission allowance spot price. However,
for S!(t) and S!(t), the sensitivity to x; has opposite effects to those for
Se(t).

Emission Allowance Spot Emission Allowance Spot

300
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\ 50 1
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Figure 5: Sensitivity of the emission allowance spot price to x; and ks. The
solid line, the dashed line, and the chain line represent theoretical emission
allowance spot prices S.(t), S.(t), and SV (), respectively.

Figures 6, 7, and 8 show the sensitivity to maturity, the interest rate, and
the penalty, respectively. The emission allowance spot prices S,(t), S.(t),
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and S!(t) decrease as maturity increases, which is of course due to the dis-
count effect of the interest rate. Moreover, as the interest rate increases, the
emission allowance spot prices S.(t), S.(t), and S! (t) decrease. The result on
the penalty Z is also obvious. As Z increases, the emission allowance spot
price S.(t) also increases. However, S’(t) and S”(t) are not affected by the
penalty.

Figure 6: Sensitivity of the emission allowance spot price to maturity. The
solid line, the dashed line, and the chain line represent the theoretical emis-
sion allowance spot prices S,(t), S.(t), and S¥(t), respectively.
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We now turn to the analysis of hedge ratios. Figure 9 shows the sen-
sitivity of hedge ratios of commodity futures to commodity futures prices.
Comparing the hedge ratios, we see that the hedge ratio of G (the upper
surface) is more sensitive than that of Gy (the lower surface). This is because
Hj is larger than H,, which implies that G;(¢,7) has more impact on the
hedge ratio than G(t,T) does. Furthermore, the hedge ratio of Gy is more
sensitive to G1(¢,T) than to Ga(t,T). Note that as G(t,T') gets large, the
emission allowance futures price converges to e"™ 97 and thus the hedge
ratios converge to zero.

Figure 10 shows the sensitivity of the hedge ratios to the volatilities of
commodity prices. The hedge ratios of G; do not increase or decrease mono-
tonically as og, (i = 1,2) increases. og, affects the hedge ratios through
i and O%e, Ko, with correlations ps, s; and ps, 5;. Therefore, it is difficult

to determine the direction of changes in the hedge ratios as the volatility
changes. The effect can be negative or positive. Likewise, the hedge ratios
of G5 increase and then decrease as og, increases. However, because H; is
larger than Hs, the hedge ratio of G5 is insensitive to both parameters.
Figure 11 shows the sensitivity of the hedge ratios to o5, and os,. We see
that the hedge ratio of GG; has an U-shape relative to o5, and o5,. 05, has the
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Figure 7: Sensitivity of the emission allowance spot price to interest rate.
The solid line, the dashed line, and the chain line represent the theoretical
emission allowance spot prices S¢(t), S.(t), and S”(t), respectively.
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Figure 8: Sensitivity of the emission allowance spot price to penalty. The
solid line, the dashed line, and the chain line represent the theoretical emis-
sion allowance spot prices S,(t), S.(t), and S”(t), respectively.
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Figure 9: Sensitivity of hedge ratios of commodity futures to G;(¢,T) and
Go(t,T). The upper and lower surfaces represent the hedge ratio of com-
modity futures 1 and the hedge ratio of commodity futures 2, respectively.
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Figure 10: Sensitivity of hedge ratios of commodity futures to og, and og,.
The solid line and the dashed line represent the hedge ratio of commodity
futures 1 and the hedge ratio of commodity futures 2, respectively.
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same effect as g, on pyg,. and oy, g , which causes the complicated rela-
7 7 7

tion. Again, the hedge ratio of (5 is insensitive to the volatility parameters,
for the reason we have just described.

Hedge Ratios Hedge Ratios
T T T T

16

0.7 05

Figure 11: Sensitivity of hedge ratios of commodity futures to o5, and oy,.
The solid line and the dashed line represent the hedge ratio of commodity
futures 1 and the hedge ratio of commodity futures 2, respectively.

Figure 12 shows the sensitivity of the hedge ratios to k; (i = 1,2). We
see that there are same effect on the hedge ratio of G| for k; as os,, which
can be explained by the same argument as above. The hedge ratio of G,
decreases as kg increases. On the other hand, because H; is larger than Ho,
the hedge ratio of G4 is smaller than that of G.

Hedge Ratios Hedge Ratios

Figure 12: Sensitivity of hedge ratios of commodity futures to x; and k,.
The solid line and the dashed line represent the hedge ratio of commodity
futures 1 and the hedge ratio of commodity futures 2, respectively.
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5 Conclusion

In this paper, we proposed a model of the emission allowance spot price as a
derivative of the commodity spread. We assumed that the emission allowance
spot price at the end of the trading period was equal to the minimum of the
spread of the two commodity prices and the penalty when it was positive,
or equal to zero otherwise. We emphasized the interrelation between prices
of emission allowances and commodities (i.e., fuels), which had not been
incorporated in preceding papers on the valuation of emission allowances.

This paper showed that the emission allowance spot price could be repli-
cated as the value of a portfolio of commodities and a risk-free asset. This
formula provides a firm, such as a power company, with a hedging strategy
for the required emission allowance. Furthermore, the formula implies that
the emission allowance spot price could exhibit properties similar to those
of commodity prices, because the emission allowance price can be replicated
as a portfolio of two commodities. We characterized the values of options
embedded in emission allowances. In addition, we derived the formulae for
emission allowance futures and options. We also analyzed the behavior of the
hedge ratios of emission allowance futures by commodity futures. From the
numerical analysis with certain parameter values, we found that the option
values for the penalty embedded in emission allowances was relatively large,
which implied that the penalty was an important component in evaluating
emission allowances.

For future research, it would be interesting to conduct an empirical anal-
ysis of the valuation formula derived in this paper. Heat/emission ratios can
be included in the critical parameters in such an analysis. It would also be
interesting to explore the model using alternative assumptions. For example,
we could investigate a model in which the emission allowance price at the end
of the period is determined in a different way to that assumed in this paper.
We could also analyze a model whose underlying commodity prices follow
stochastic processes that are different from the standard Gibson—Schwartz
process and may include seasonality, jumps, or stochastic volatility. As we
emphasized, the interrelation between the prices of emission allowances and
commodities (e.g., fuels) should be the key to understanding the properties
of emission allowance prices. With this point in mind, empirical analyses on
the prices of coal, natural gas, electricity and other commodities should form
the foundation for the study of emission allowance prices.
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6 Appendices

6.1 The Solutions of Spot Prices

In this subsection, we provide the solutions of spot prices and its statistical
properties. The spot prices can be derived as follows.?

Ki

Si(T) = Si(t)exp { (7“ - %agi — O%') (T —t) + i(@z — 5i(1))(1 — e (T

T 1 T 1 T
+/ O'SidWSi(S) — —/ U(sidW(si(S) + H_/ eiﬁi(Tis)O'(sidW(si(S)
t i Jt i Jt

= Si(t)exp{Xi(¢t,T)}

where

X;(t, T) = (r — %aéi — di) (T —t)+ i(@z — &) (1 — efni(Tft))

i

T 1 T 1 T
+/ O'SidWSi(S) - —/ U(sidW(gi(S) + —/ €_Hi(T_s)0'5idW5i(S)
t t t

Ki Ki

Notice that X;(¢,7) is a Gaussian and its mean and variance can be
calculated.

px,(tT) & E[X(t,T)]

The covariance oy, x, (t,T) is
0X1X, (t7 T) = Et[(Xl (ta T) - Hx, (ta T))(XZ(ta T) — KX, (ta T))]
_ (Uslsz 0816y 0834, + 05152> (T —t) + <051262 . 0616;) (1- efnz(Tft))

Ko K1 K1K2 Ky R1Ky

+ (0-5251 . 05152> (1 N e—m(T—t)) + 0416, (1 . ef(erlﬁz)(Tft))
K1K2

K2 K2 ko (K1 + ko)

and we suppose the correlation py, x, (¢, T) as

OXx, X (taT)
(8T) = —=
leXz(a ) UXl(taT)UXZ(t’T)

9For derivation, see Bjerksund (1991).
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Thus X;(¢,T) can be expressed as

x 2 ( gg g ) ~ N(py(t.T), Sx (5. T))

where
Hx(th) = (MXIE?

2
Sx(t,T) 2 ( 7
2

6.2 Proof of Proposition 2.1

We calculate the following equation in this subsection. Let us use the nota-
tion @(-) and ¢(-) as the standard normal distribution and density function,
respetively, and also N(-|u,0?) and n(-|u,0?) as normal distribution and
density function with 1 and 0% as mean and variance, respectively.

S.(t) = e "TVE[(H S(T) — HySo(T)) A Z) v 0].

For notational convenience, we will omit the time parameters such as pux, =
px;(t,T). The expectation is

E((H1S1(T) — HS2(T)) N Z) V0]

— HS (1) / expla In(@|i, Sx)dz — HySa(t) / expla}n(@|iy, Sx)do
Dy Dy

+Z/ n(xlpy, Xx)de
Ds>

where

d(z2,7Z) = In(HyS2(t) exp{z2} + Z) — In(H;5:(t))
D1 == {CL’ == [$1,1‘2]T|d(l’2,0) S T S d(l‘z, Z)}
Dy = {x=[v1,2) |71 > d(22,2)}.

We calculate each integral. Let us use e; to be the unit vector which ¢-th
element is one. For the integrals of the first and second term, we have

/ expl:n(@|py, Sx)de
Dy

1
= exp {MX,- + 505(}/ (27r)*1|Z]X|*%
Dy

1
X exp{ - 5(33 —px —Yxe) S (e — py — EXei)}da:
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where we completed the squares. Furthermore, the integral can be expanded
by changing the variables.

1
/ (27)_1|2X|_% exp {_5(93 —Hx — EXBI)TE)_(I(CB —MHx — Exel)} dx
D,

2

00 di(z2,2) ) 1o y , .
= / /d (27T(1_pX1X2)) 20y, eXP{—E} (1 _PX1X2)2UX1dy

1(z2,0)

2
1 _ _
x(2m) 20! exp{ —5 <x2 M):X UX1X2> }dxz
2

= [ (@2, 2)) = @ Ol + v 03 )

o0

where
_ In(HySy(t) exp{a} + 2) — In(H, 5, (t)) — px, — 0%,

dl(xaz) -
O-XI ]‘ - p%(1X2

T—UXy—0X | Xy
0'X2

PX1X,0X,

_ 2
UXI ]‘ pX1X2

In addition, we can simplify the second part of the integration. Generally
it is known that,

O(d) = P(X,<dy)=P(X;<d, X, <o) (7)
. > di — p12T2 ) da
- /Oo@(%_p%)cé( )y

[Xl,XQ] ~ N(O, 2)

2:|:]- p12:|
pi2 1

where

Notice that,
BXo+0X X,
X,

In(HyS5(t)/H1S1(t)) — px, — Ugﬁ + Px,x,0x,

dl(x% 0) = e —
UXI ]‘ - p%(1X2

<M — ]_) (O'X2fi'1 + MXz + O-XlXQ)

0'X2
/ 2
O-XI ]‘ - pX1X2

f — pIy
1— /2
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where we defined &1 = (3 — px, — 0x,x,)/0x, and used the following facts.

R PX1X20X1 . 1) o
P — ( X2 . leXz X1 — Ox
_ 52
1-p \/ leXz \/ leXz
R X1 X20X X,
:> p — p 1A2 1

2
\/UXI - 2pX1X20X10X2 + OXx,

[ 1 (IH(HQSz( )/HISI(t)) — 0-/2"1 + pX1X2UX1M
— p?

0'X2
/ 2
ox,1/1— PX\ X,

(M _ 1) (x, + 0X1X2)>
J— UX?

/1 _ 2
O-XI ]‘ pX1X2

In(H,S5(t)/HiS1(t)) — px, + pix, — 0%, +0xix,
\/Ug(l —20x,x, + aiz

Now, we have

—/ ®(dy (22,0))n (22| px, + 0x, x5, 0%, ) s

o0
* fh — Py e X
= — | O T | o(@)di = —P(n)
[Lo (%)
where we used n(z|py, + oy, x,,0%,) = —— d)(%), changed the
2

variables and (7).

The other integrals are calculated in similar manner.
1 1
/ (2m) HEx| % exp {—5(:1: —px —Yxe) S (2 — py — EXeg)} dx
Dy

— [ @dalrs Zn(asliy, + 04,003, )z — i)

oo

where

In(H,S(t) exp{a} + 2) — In(H151(t)) — pix, — px, x,0x, 2

0'X2
/1 _ 2
O-XI ]‘ pX1X2

R In(H,S(t)/H1S1(t)) — pix, + tix, — 0x, x5 + 0%,
\/0/2Yl —20x,x, + aiz

do(x,2) =
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The integral of the last term is
-1 —1 1 Ty-1
[ en i e {3 - w2 - ) fda
Do
— [ e(-dslon 2lalinsa, o, o

o0

Collecting all terms, we have the valuation formula.

S.(t) = Hi(t,T)S:(t) — Ha(t, T)So(t) + Hs(t,T)Z (8)

1
H\(t,T) = Hexp { —r(T—t)+ px, (£, T) + 5012Y1(t7T)}
X (/ (I>(d1 ($2, Z))’I‘L($2|IU,XZ (tv T) T Ox X, (ta T)v 0-12\’2 (tv T))de

—®(jn (t, T)))

~

1
Hy(t,T) = Hyexp { —r(T —t) + px, (£, T) + 503(2 (t, T)}

X (/OO D(do(22, Z))n (w2l pix, (8, T) + 0%, (1, T), 0%, (t, T))ds

o0

_(I)(/lZ(taT))>

o0
A~

H;(t,T) = exp(—r(T—t))/ ®(—do(z2, Z))n (22| px, (t, T), 0%, (t, T))dxs

— 00

di(0,2) = dofw,2) = ox, (1)1 = P, (1.7)
In(HyS5(t) exp{z} + z) — In(H 151 (t)) — px, (t, T)
ox, (7)1 = p, (8 T)

—ux, (4T
PX1Xs (ta T)UXl (t7 T)%

o, (6 T/ = P (8 T)

dy(z, 2)
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In(HySa(t)/HyS1 () = pox, (6 T) + i (6,T) = 03, (6T) + 0, x, (1, T)
Vo (0 T) = 205, (6T) + 03, (1,T)

ﬂQ(ta T) = [ (ta T) + \/O—g(l (t7 T) — 20x,x, (t7 T) + 0%(2 (t7 T)

m,T) =

6.3 Proof of Proposition 3.1

In this subsection, we derive the hedging strategy for emission allowance using

futures commodities. First, we use the future commodity prices equation

written in terms of spot commodity prices and derive the future price process

using Ito’s lemma. This price process can be explicitly written in terms of

futures price levels. Then, we calculate the expectation and covariance of

stochastic terms of futures price using properties of stochastic calculus.
a;(t,T)

3

Gi(t, T) = Si(t)e! 0

where

px,(t,T) = E[Xi(t,T)]

_ ( _ % ~ @Z> (g4 G sz(t» (1= e=rir-D)

and

0%, (t,T) = B[(Xi(t,T) — pg, (1, 7))

K; K 2K
5o

2 — L TN (™)
i K

We need the following partial derivatives.

oG;(t,T)  Gi(t,T)

oS;(t) St
0Gl(t, T) 1— e‘”i(T_t)
EAAULD I A A )

Since the futures price G;(t,T') is a function of S;(t),d;(¢) and twice dif-
ferentiable, we can use the Ito’s lemma and the dynamics of future price
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is
oG, oG,
dG;(t,T) = o0g,S;(t) 8—&dW5i (t) + o, 2. dWs, (1)
1 efni(Tft)
= (O—Sl dI/VSz (t) — O0g; . dI/V(;z (t)) Gl (t, T) .

where the drift term is 0 since G;(¢,7T) is martingale under the risk-neutral
probability.
Again, using Ito’s lemma we have,

dlog G;(t,T)

The futures price can be expressed as follows.
GilTy, T;) = Gy(t, T;)e¥e: BT < Ty < T4
where

A~

XGi(taTﬂaT’i) = :U’XGi(t:TmT’i)

To To 1 — e—Hi(Ti—u)
4 / o5, dWs. (1) — / s T W ()
t t

Ki

The expectation value pg (¢, Ty, T;) is

MX’Gi (ta To, Tz) = Et[XG,- (t, To, Tz)]

1 1 1 . e
oe (To—t) — 205i5i;{(T0 — 1) — —(e~mTi=To) _ o=rilTi t))}

[ i
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The covariance of X¢, (¢, Ty, T;) and ng (t, Ty, T;) is calculated as follows.

O—XG’iXG’]— (ta TO) T'i; T’]) = COVt[XGi (ta TU7 T’l)a XG]' (t7 T07 T'])]

+05,5. (TO _ t) - 1 ( —k;i(T;=Tp) —ki (T —t)) i(e_ﬁj(T._To)
1Yy 7/’{/] [{'/l K./]
;(e—ﬁi(Ti—TO)—ﬁj(T}'—TO) _ e_K’i(Ti—t)—K/j(T]‘—t))
Ki + K

Now we derive the emission allowance futures price using commodity
future prices.

Ge(t,T) = Ei[S.(T)] = E[((H:1S\(T) — H2S2(T)) A Z) V ]
= E[((H\G(t,T)e*o T — HyGy(t, T)eXe 611 A 2) v 0]

With the same argument as in the proof of Proposition 2.1, we have
Ge(ta T) = -Hl (ta T)Gl (ta T) - IA{? (ta T)GQ(ta T) + f{3(t7 T)Z

where

2 1
Hl(t, T) = H1 exp {/LXGI (t,T, T) + 50—%6’1 (t,T, T, T)}

« { /: B(dey (29, 7))

xn(@a|pg, &,T,T) + 0%, %, (6T, T,T), a§(G2 (t,T,T,T))dx,

— (i (t, T))}
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2 1
Hg(t,T) = H2 exp {MXGQ (t, T, T) + 50’?&(}12 (t,T, T, T)}

x{ /: B(de, (2, 7))

xn(wslpg,, (6T,T)+ a§(G2 (t,T,T,T), a§(G2 (t,T,T,T))dx,

(i (1, T))}

Hy(t,T) = / B(—dos (w2, 2)n(@slpg,, (4. T.T7), 0% (4T,T,T))da,

Xa
) 2

doy(2,2) = day(w,2) —ox, (t,T,1,T) \/1 ~ Py s, LT LT
In(HyGy(t,T) exp(z) + Z) — In(H G (¢,T)) — ke, (¢, T,7T)

d02 (1‘, Z) = 5
0%e, (T, T,T) \/1 — P e, (t,T,T,T)
r—pyg  (t,T,T)
pXGlXGQ (t, T, T, 7—")0')36:1 (t, T, T, T) W
0o, (T, T,T) \/1 — p§(Gl %, (t,T,T,7T)
R 1H(H2G2 (t, T)/H1G1 (t, T)) - MXGI (t, T, T) + /LXGZ (t, T, T)
Hay (ta T) =

Xa,

\/a% (L T.1.7) = 20%, 5, (tT.T.T) + 0% (+T,T.T)
_O-IQQ'GI (ta Ta T7 T) + O-XGI XGZ (t, T, T, T)

_|_
\/a% (&, T,T,T) =204, ., (T, T,T) + af%? (t,T,T,T)

Xa,

fi (ta T) = [iey (tv T) + \/U§2G1 (t’ T,T, T) - 2UXG1XG2 (ta 1,7, T) + O%(% (ta .7, T)
We now derive the hedging equation for emission allowance futures price

using commodity futures prices. Using Ito’s lemma, the dynamics of emission

allowance futures price dG.(t,T) is

dG.(t,T) = Gy\(t,T)dH\ (. T) + Hy(t, T)dG\(t,T) + dH, (1, T)dG: (1, T)

_Go(t, T)dHo(t, T) — Ho(t, T)dGs(t, T) — dHy(t, T)dGy(t, T)
+ZdHs(t,T)
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and dH;(t,T) is

) N
X H;(t,T
ahry = 2T, 5~ OH(LT)

— T dG(t, T
ot s 0G;(t,T) ()

1 O2H,(t,T)
2 2 3G, (1. T)IGK(1.T)

1 — e—nk(T—t)

+ (O'SjO'Sij(t,T)Gk(t,T)

—08;6 TG] (ta T)Gk(ta T)
1 — efn]-(Tft)
—08,.4; H—GJ (ta T)Gk (ta T)
J
1— —k;(T—t) 1— —k(T—t)
+05;0, d-e i —e )Gj(t, T)Gg(t,T) |dt
RjKE

Substituting dH;(t, T) to dG.(t,T), we have

dG,(t,T)
OH, (t,T) OH(t,T) OH(t,T)
N Z Gi(t,T)  PH(LT)  GT)  PH(T)
2\ 729Gt TIGK(L,T) 2 0G,(t, T)0Gx(L, T)
Z  PH,(,T)
296, 1o (.T) ) | 755 Gl DG T)
1— efnk(Tft) 1— efnj(Tft)
—05,5, - G(t, T)Gi(t, T) — 05,5, —————G(t, T)G(t, T)
K Kj
1— e*ﬁj(Tft) 1— efnk(Tft)
+05j5k ( )( )G] (ta T)Gk (ta T))
RjRE
OH(,T) [ 5 | e
g2y T) -2 T
aGl (t, T) (USIGI (t7 ) 0—5151 /{1 Gl (t7 )

1— —k1(T—t)\2
+03, (1-e e ) Gi(t, T))

1
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8]?[ t, T 1 — e—r2(T—1)
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Here after, we omit the time parameters. The partial derivatives are calcu-
lated as follows.
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