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A NOTE ON CATEGORICAL RISK MEASURE THEORY

TAKANORI ADACHI

ABSTRACT. We introduce a category that represents varying risk
as well as uncertainty, and give a generalized conditional expec-
tation as a contravariant functor on the category. Then, we re-
formulate dynamic monetary value measures as a contravariant
functor on the category. We show some axioms of dynamic mon-
etary value measures in the classical setting are deduced as theo-
rems in the new formulation, which may be one of the evidences
that the axioms are natural. We also demonstrate a topology-as-
axioms paradigm in order to give a theoretical criteria with which
we can pick up appropriate sets of axioms required for monetary
value measures to be good.

1. INTRODUCTION

The risk measure theory we are formulating is a theory of dynamic
(multi-period) monetary risk measures. Since the axiomatization of
monetary risk measures was initiated by [ADEH99], many axioms
such as law invariance have been presented ([Kus01], [FS11]). Espe-
cially after introducing multi-period (or dynamic) versions of mon-
etary risk measures, a lot of investigations have been made so far
[ADE+07]. Those investigations are valuable in both theoretical and
practical senses. However, it may be expected to have some the-
oretical criteria of picking appropriate sets of axioms out of them.
Thinking about the recent events such as the CDS hedging failure
at JP Morgan Chase, the importance of selecting appropriate axioms
of monetary risk measures becomes even bigger than before. In this
note, we formalize dynamic monetary risk measures in the language
of category theory in order to add a new view point to the risk mea-
sure theory.

Category theory is an area of study in mathematics that examines
in an abstract way the properties of maps (called morphisms or ar-
rows) satisfying some basic conditions. It has been applied in many
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2 T. ADACHI

fields including geometry, logic, computer science and string theory.
Even for measure theory, there are some attempts to apply category
theory such as [Jac06] or [Bre77]. However, in finance theory, as far
as we know, there has been nothing. We will use it for formulating
dynamic monetary risk measures and their underlying structure.

In this note, we will stress three points. First is to present a categor-
ical way to handle (dynamic) risk as well as uncertainty, which has
the potential to develop several stochastic structures with it. Second
is how we can formulate some concepts of dynamic risk measure
theory in the structure provided in the first point, and show some
axioms in the classical setting become theorems in our setting. Third
is to present a criteria of selecting sets of axioms required for mone-
tary value measure theory in a sheaf-theoretic point of view.

The remainder of this paper consists of four sections.
In Section 2, we provide brief reviews about dynamic risk measure

theory and category theory.
In Section 3, we provide a base category with which we handle

not just a dynamic (temporal) structure but also uncertainty (spacial)
structure in the sense that it handles measure change internally. We
define a generalized conditional expectation on the category.

In Section 4, we give a definition of monetary value measures as
contravariant functors from the category defined in Section 3 to the
category of sets. Then, we will see the resulting monetary value mea-
sures satisfy time consistency condition and dynamic programming
principle that were introduced as axioms in the old version of dy-
namic risk measure theory.

In Section 5, we will investigate a possibility of finding an ap-
propriate Grothendieck topology for which monetary value mea-
sures satisfying given axioms become sheaves. We also introduce
the notion of complete set of axioms with which we give a method
to construct a monetary value measure satisfying the axiom from
any given monetary value measure.

2. REVIEW OF DYNAMIC RISK MEASURES AND CATEGORY
THEORIES

In this section we give a very brief review of dynamic risk measure
theory and category theory. Throughout this note, all discussions are
under the probability space (Ω,F , P).

2.1. Dynamic Risk Measure Theory. First, we review the case of
one period monetary risk measures.

Definition 2.1. A one period monetary risk measure is a function ρ :
Lp(Ω,F , P) → R satisfying the following axioms

• Cash invariance: (∀X)(∀a ∈ R) ρ(X + a) = ρ(X)− a,
• Monotonicity: (∀X)(∀Y) X ≤ Y ⇒ ρ(X) ≥ ρ(Y),
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• Normalization: ρ(0) = 0,
where Lp(Ω,F , P) is the space of equivalence classes of R-valued
random variables which are bounded by the ∥ · ∥p norm.

Here are examples of one period risk measures.

Example 2.2. [One Period Monetary Risk Measures]
(1) Value at Risk

VaRα(X) := inf{m ∈ R | P(X + m < 0) ≤ α}
(2) Expected shortfall

ESα(X) :=
1

1 − α

∫ 1

α
VaRu(X)du

Now, we will define the notion of dynamic monetary risk mea-
sures. However, we actually adopt the way of using a monetary
value measure φ instead of using a monetary risk measure ρ below by
conforming the manner in recent literature such as [ADE+07] and
[KM07], where we have a relation φ(X) = −ρ(X) for any possible
scenario (i.e. a random variable) X. So from now on, we think a mon-
etary value measure φ instead of a monetary risk measure ρ defined by
φ(X) := −ρ(X).

Definition 2.3. For a σ-field U ⊂ F , L(U ) := L∞(Ω,U , P|U ), is the
space of all equivalence classes of bounded R-valued random vari-
ables, equipped with the usual sup norm.

Definition 2.4. Let F = {Ft}t∈[0,T] be a filtration. A dynamic mon-
etary value measure is a collection of functions φ = {φt : L(FT) →
L(Ft)}t∈[0,T] satisfying

• Cash invariance: (∀X ∈ L(FT))(∀Z ∈ L(Ft)) φt(X + Z) =
φt(X) + Z,

• Monotonicity: (∀X ∈ L(FT))(∀X ∈ L(FT)) X ≤ Y ⇒
φt(X) ≤ φt(Y),

• Normalization: φt(0) = 0.

Note that the directions of some inequalities in Definition 2.1 are
different from those of Definition 2.4 because we now monetary value
measures instead of monetary risk measures.

Since dynamic monetary value measures treat multi-period situ-
ations, we may require some extra axioms to regulate them toward
the time dimension. Here are two possible such axioms.

Axiom 2.5. [Dynamic programming principle] For 0 ≤ s ≤ t ≤ T,
(∀X ∈ L(FT)) φs(X) = φs(φt(X)).

Axiom 2.6. [Time consistency] For 0 ≤ s ≤ t ≤ T, (∀X, ∀Y ∈ L(FT)) φt(X) ≤
φt(Y) ⇒ φs(X) ≤ φs(Y).
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2.2. Category Theory. The description about category theory pre-
sented in this subsection is very limited. For those who are interested
in more detail about category theory, please consult [Mac97].

Definition 2.7. [Categories] A category C consists of a collection OC
of objects and a collection MC of arrows or morphisms such that

(1) there are two functions MC
dom //

cod
// OC .

When dom( f ) = A and cod( f ) = B, we write f : A → B.
We define a so-called hom-set of given objects A and B by

HomC(A, B) := { f ∈ MC | f : A → B}. We sometimes write
C(A, B) for HomC(A, B).

(2) for f : A → B and g : B → C, there is an arrow g ◦ f : A → C,
called the composition of g and f .

(3) every object A is associated with an identity arrow 1A : A → A
satisfying f ◦ 1A = f and 1A ◦ g = g

where dom( f ) = A and cod(g) = A.

Example 2.8. [Examples of Categories]

(1) Set : the category of small sets
• OSet := collection of all small sets,
• MSet := collection of all functions between small sets.

(2) Top : the category of topological spaces
• OTop := collection of all topological spaces,
• MTop := collection of all continuous functions between

topological spaces.
(3) Opposite category Cop

Let C be a given category. Then we define its opposite cat-
egory Cop by the following way.
• OCop := OC ,
• for A, B ∈ OC , HomCop(A, B) := HomC(B, A).

Example 2.9. [Preordered Sets as Categories]
A preordered set (sometimes we call it a proset) (S,≤), where the

binary relation ≤ on S is reflexive and transitive, can be considered
as a category defined in the following way.

• OS := S,

• for a, b ∈ S, HomS(a, b) :=

{
{∗a

b} if a ≤ b,
∅ otherwise.

We see the correspondence between definitions of prosets and cate-
gories below.

(1) Reflexivity vs. identity arrows: a ≤ a

a
1a=∗a

a // a
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(2) Transitivity vs. composition arrows: a ≤ b and b ≤ c implies
a ≤ c

a
∗a

b //

∗a
c=∗b

c◦∗a
b ��

b

∗b
c

��
c

There are maps between categories, called functors.

Definition 2.10. [Functors] Let C and D be two categories. A functor
F : C → D consists of two functions, FO : OC → OD and FM :
MC → MD satisfying

(1) f : A → B implies F( f ) : F(A) → F(B),
(2) F(g ◦ f ) = F(g) ◦ F( f ),
(3) F(1A) = 1F(A).

Definition 2.11. [Contravariant Functors] A functor F : Cop → D is
called a contravariant functor. if two conditions 1 and 2 in Definition
2.10 are replaced by

(1) f : A → B implies F( f ) : F(B) → F(A),
(2) F(g ◦ f ) = F( f ) ◦ F(g).

Here are important examples of contravariant functors, called rep-
resentable functors.

Example 2.12. [Representable Functor]

Cop HomC (−,C)
// Set

A

f
��

HomC(A, C) ∋ g ◦ f

B HomC(B, C) ∋

HomC ( f ,C)

OO

g
_

OO

Now we have maps between functors, called natural transforma-
tions.

Definition 2.13. [Natural Transformations] Let C
F //

G
// D be two

functors. A natural transformation α : F→̇G consists of a family of
arrows

⟨
αC|C ∈ OC

⟩
making the following diagram commute:

C1

f
��

F(C1)

F( f )
��

αC1 // G(C1)

G( f )
��

C2 F(C2) αC2

// G(C2)
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Definition 2.14. [Functor Categories] Let C and D be categories. A
functor category DC is the category such that

• ODC := collection of all functors from C to D,
• HomDC (F, G) := collection of all natural transformations from

F to G.

3. GENERALIZED CONDITIONAL EXPECTATIONS

We fix a measurable space (Ω,F ) in the rest of this note.
In this section, we give a category called χ which will be a base

category throughout this note, and define a generalized conditional
expectation functor on it.

Definition 3.1. [Category χ] Let χ := χ(Ω,F ) be the set of all pairs
of the form (G, P) where G is a sub-σ-field of F and P is a probability
measure on F . For an element U ∈ χ, we denote its σ-field and prob-
ability measure by FU and PU , respectively. That is, U = (FU , PU ).

Let us introduce a binary relation ≤χ on χ by for U and V in χ,

(3.1) V ≤χ U iff FV ⊂ FU and PV ≫ PU

where PV ≫ PU means that PU is absolutely continuous to PV .
Then, obviously the system (χ,≤χ) is a preordered set. Hence by
Example 2.9 we can think χ as a category.

We simply denote the unique arrow ∗VU between objects V and U
of χ with V ≤χ U by ∗ unless there is a risk of ambiguity.

We may be able to think the category χ having two dimensions;
one is a time dimension or risk dimension that is represented in a
horizontal direction in Diagram 3.1, and the other is a space dimen-
sion or uncertainty dimension representing in a vertical direction.

Note that for objects U ,V ∈ χ, U is isomorphic to V (we write this
by U ≃ V) if and only if FV = FU and PV ≈ PU (equivalent) .

Now let V → U be an arrow in χ. Then by definition, we have
PU ≪ PV , in other words, PU (A) = 0 whenever PV (A) = 0 for
A ∈ F . Therefore, for any F -measurable function X on Ω, we have
[X]PV ⊂ [X]PU . This fact makes the following definition be well-
defined.

Definition 3.2. [Functor L]
A functor L : χ → Set is defined by for V → U in χ,

V

��

� L // LV :=

LV
U

��

L∞(Ω,FV , PV |FV ) ∋ [X]PV |FV_
LV
U

��
U � L // LU := L∞(Ω,FU , PU |FU ) ∋ [X]PU |FU



CATEGORICAL RISK MEASURE THEORY 7

W // ''
YY V //

YY U YY

(FW , PW ) //

�� ''NN
NNN

NNN
NNN

(FV , PW ) //

��

(FU , PW )

��
(FW , PV ) //

��

U
nc

er
ta

in
ty

→

(FV , PV ) //

�� ''NN
NNN

NNN
NNN

(FU , PV )

��
(FW , PU ) //

Risk →

(FV , PU ) // (FU , PU )

DIAGRAM 3.1

where L∞(Ω,FU , PU |FU ) is the Banach space defined as a quotient
space of all FU -measurable functions on Ω under the equivalent re-
lation ∼PU defined by X ∼PU Y iff X = Y PU -a.s..

Proposition 3.3. For W // V // U in χ and X ∈ LU ,

(1) EPU [X|FV ]
dPU
dPV

|FV = EPV [X dPU
dPV

|FU |FV ] PV -a.s.,

(2) dPV
dPW

|FU × dPU
dPV

|FU = dPU
dPW

|FU PU -a.s.

where dPU
dPV

is a Radon-Nikodym derivative of PU with respect to PV .

Proof. (1) When Q ≪ P and G ⊂ F , we have

(3.2)
dQ

dP
|G= EP[

dQ

dP
| G] P-a.s.

and

(3.3) EQ[X | G] =
EP[X dQ

dP
| G]

EP[ dQ
dP

| G]
Q-a.s.

by Proposition A.11 and Proposition A.12 in [FS11]. Then, by
(3.2) and since X is FU -measurable, we have with PV -a.s.,

EPV [X
dPU
dPV

|FU | FV ] = EPV [XEPV [
dPU
dPV

| FU ] | FV ]

= EPV [EPV [X
dPU
dPV

| FU ] | FV ]

= EPV [X
dPU
dPV

| FV ].

Therefore, again by (3.2) and (3.3), we get the desired equa-
tion.
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EPU [X|FV ]
dPU
dPV

|FV

∈

=EPV [X dPU
dPV

|FU |FV ] X dPU
dPV

|FU

∈

�oo

L(FV , PV ) L(FU , PV )oo

L(FV , PU )

OO

L(FU , PU )

EV
U

eeLLLLLLLLLLLL
oo

OO

EPU [X|FV ]

∈
_

OO

X

∈
_

OO

�oo

DIAGRAM 3.2

(2) By (3.2), (3.3) and again by (3.2), we have with PU -a.s.,

dPU
dPV

|FU = EPV [
dPU
dPV

| FU ] =
EPW [ dPU

dPV
dPV
dPW

| FU ]

EPW [ dPV
dPW

| FU ]

=
EPW [ dPU

dPW
| FU ]

EPW [ dPV
dPW

| FU ]
=

dPU
dPW

|FU
dPV
dPW

|FU

.

□

Definition 3.4. [Generalized Conditional Expectation] A generalized
conditional expectation is a contravariant functor E : χop → Set de-
fined by for V → U in χ,

V

��

� E // E(V) := LV

U � E // E(U ) :=

EV
U

OO

LU

where

(3.4) EV
U (X) := EPU [X|FV ]

dPU
dPV

|FV

for X ∈ LU .

Note that EV
U in Definition 3.4 is well-defined by Proposition 3.3.

See also Diagram 3.2 and Diagram 3.3.
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LW LV
EW

V

oo LU
EV

U

oo

EW
U

vv

L(FW , PW ) L(FV , PW )
EPW [−|FW ]
oo L(FU , PW )

EPW [−|FV ]oo

L(FW , PV )

OO

U
nc

er
ta

in
ty

→

L(FV , PV )oo

OO
EW

V
hhQQQQQQQQQQQQQQ

L(FU , PV )oo

−× dPV
dPW

|FU

OO

L(FW , PU )

OO

Risk →

L(FV , PU )oo

OO

L(FU , PU )oo

EV
U

hhPPPPPPPPPPPPPP
−× dPU

dPV
|FU

OO

DIAGRAM 3.3

4. MONETARY VALUE MEASURES

Definition 4.1. [Monetary Value Measures] A monetary value measure
is a contravariant functor

φ : χop → Set

satisfying the following two conditions:
(1) for U ∈ χ, φ(U ) := LU ,
(2) for V → U in χ, the map φV

U := φ(V → U ) : LU → LV
satisfies
• Cash invariance: (∀X ∈ LU )(∀Z ∈ LV ) φV

U (X + LV
U (Z)) =

φV
U (X) + Z PV -a.s.,

• Monotonicity: (∀X ∈ LU )(∀Y ∈ LU ) X ≤ Y ⇒ φV
U (X) ≤

φV
U (Y) PV -a.s.,

• Normalization:
φV
U (0LU ) = 0LV PV -a.s. if PV = PU .

At this point, we do not require the monetary value measures to
satisfy some familiar conditions such as concavity, positive homo-
geneity or law invariance. Instead of doing so, we want to see what
kind of properties are deduced from this minimal setting.

The most crucial key points of Definition 4.1 is that φ does not
move only toward time direction but also moves over several ab-
solutely continuous probability measures internally. This means we
have a possibility to develop risk measures including uncertainty
within this formulation.
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W

��

� φ
//

��

φ(W) := LW

V

��

� φ
// φ(V) :=

OO

LV

φW
V

OO

U � φ
// φ(U ) :=

OO

LU

φV
U

OO
φW
U

]]

DIAGRAM 4.1

Another key points of Definition 4.1 is that φ is a contravariant
functor. So, for any triple W → V → U in χ, we have, as seeing in
Diagram 4.1,

(4.1) φU
U = 1LU and φW

V ◦ φV
U = φW

U .

Example 4.2. [Entropic Value Measure] For a non-zero real number
λ, an entropic value measure is a contravariant functor φ : χop → Set
defined by

φ(U ) := LU and φV
U (X) := λ−1 log EV

U (e
λX)

for V → U in χ and X ∈ LU . Then, it is easy to see that the contravari-
ant functor φ is well-defined and is a monetary value measure.

Now in case FV = FU , we have

φV
U (X) = λ−1 log EV

U (e
λX)

= λ−1 log
(
eλX dPU

dPV
|FV

)
= X + λ−1 log

(dPU
dPV

|FV

)
.

Especially, we have φV
U (0LU ) = λ−1 log

( dPU
dPV

|FV

)
, which is not 0LV

unless PV = PU on FV .
This is the reason we require the assumption PV = PU in the nor-

malization condition in Definition 4.1.

Here are some properties of monetary value measures.

Proposition 4.3. Let φ : χop → Set be a monetary value measure, and
W → V → U be arrows in χ.

(1) If PV = PU , we have φV
U ◦ LV

U = 1LV .
(2) Idempotentness: If PV = PU , we have φV

U ◦ LV
U ◦ φV

U = φV
U .

(3) Local property: (∀X ∈ LU )(∀Y ∈ LU )(∀A ∈ V) φV
U (1AX +

1AcY) = 1A φV
U (X) + 1Ac φV

U (Y).



CATEGORICAL RISK MEASURE THEORY 11

(4) Dynamic programming principle: If PV = PU , we have φW
U =

φW
U ◦ LV

U ◦ φV
U .

(5) Time consistency: (∀X ∈ LU )(∀Y ∈ LU ) φV
U (X) ≤ φV

U (Y) ⇒
φW
U (X) ≤ φW

U (Y).

Proof. (1) For X ∈ LV , we have by cash invariance and normal-
ization, φV

U (LV
U (X)) = φV

U (0LU + LV
U (X)) = φV

U (0LU )+X = X.
(2) Immediate by (1).
(3) First, we show that for any A ∈ V ,

(4.2) 1A φV
U (X) = 1A φV

U (1AX).

Since X ∈ L∞(Ω,U , P), we have |X| ≤ ∥X∥∞. Therefore,

1AX − 1Ac∥X∥∞ ≤ 1AX + 1Ac X ≤ 1AX + 1Ac∥X∥∞.

Then, by cash invariance and monotonicity,

φV
U (1AX)− 1Ac∥X∥∞ = φV

U (1AX − 1Ac∥X∥∞)

≤ φV
U (X)

≤ φV
U (1AX + 1Ac∥X∥∞) = φV

U (1AX) + 1Ac∥X∥∞.

Then,

1A φV
U (1AX) = 1A(φV

U (1AX)− 1Ac∥X∥∞)

≤ 1A φV
U (X)

≤ 1A(φV
U (1AX) + 1Ac∥X∥∞) = 1A φV

U (1AX).

Therefore, we get (4.2).
Next by using (4.2) twice, we have

φV
U (1AX + 1AcY) = 1A φV

U (1AX + 1AcY) + 1Ac φV
U (1AX + 1AcY)

= 1A φV
U (1A(1AX + 1AcY)) + 1Ac φV

U (1Ac(1AX + 1AcY))

= 1A φV
U (1AX) + 1Ac φV

U (1AcY)

= 1A φV
U (X) + 1Ac φV

U (Y).

(4) By (2) and (4.1), we have

φW
U = φW

V ◦ φV
U = φW

V ◦ (φV
U ◦ LV

U ◦ φV
U )

= (φW
V ◦ φV

U ) ◦ (LV
U ◦ φV

U ) = φW
U ◦ LV

U ◦ φV
U .

(5) Assume φV
U (X) ≤ φV

U (Y). Then, by monotonicity and (4.1),

φW
U (X) = φW

V (φV
U (X)) ≤ φW

V (φV
U (Y)) = φW

U (Y).

□
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In Proposition 4.3, two properties, dynamic programming princi-
ple and time consistency are usually introduced as axioms ([DS06]).
But, we derive them naturally here from the fact that the monetary
value measure is a contravariant functor as a proposition. This may
be seen as an evidence that the two axioms are natural.

Before ending this section, we mention an interpretation of one of
the most important theorems in category theory called the Yoneda
lemma in our setting.

Theorem 4.4. [The Yoneda Lemma] For any monetary value measure φ :
χop → Set and an object U in χ, there exists a bijective correspondence
yφ,U specified by the following diagram:

yφ,U : Nat(Homχ(−,U ), φ)
∼= // LU

α � // αU (∗UU )

X̃ X�oo

where X̃ is a natural transformation defined by for any V → U in χ,
X̃V (∗VU ) := φV

U (X). Moreover, the correspondence is natural in both φ
and U .

Let us see the representable functor Homχ(−,U ) as a generalized
time domain with the time horizon U . Then a natural transformation
from Homχ(−,U ) to φ can be seen as a stochastic process that is (in a
sense) adapted to φ, and its corresponding FU -measurable random
variable represents a terminal value (payoff) at the horizon.

The Yoneda lemma says that we have a bijective correspondence
between those stochastic processes and random variables.

5. MONETARY VALUE MEASURES AS SHEAVES

In general, a contravariant functor ρ : Cop → Set is called a presheaf
for a category C. By definition, a monetary value measure is a presheaf
for χ. The name presheaf suggests that it is related to another con-
cept sheaves, which is a quite important concept in some classical
branches in mathematics such as algebraic topology. [MM92]. So,
what makes a presheaf be a sheaf?

For a given set, a topology defined on it provides a criteria to
identify good (= continuous) functions within functions on the set.
In a similar way, there is a concept called a Grothendieck topology
defined on a given category that gives a criteria to identify good
presheaves (= sheaves) among presheaves on the category. In both
cases, a (Grothendieck) topology can be seen as a vehicle to identify
good functions (presheaves) among general functions (presheaves).
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set category χ
topology Grothendieck topology
function presheaf value measure

continuous function sheaf value measure
satisfying axioms

weakest topology largest Grothendieck topology
TABLE 5.1. topology-as-axioms paradigm

On the other hand, if we have a set of functions that we want to
make good (= continuous), we can find the weakest topology that
makes the functions continuous. In a similar way, if we have a set of
presheaves that we want to make good, it is known that we can pick a
Grothendieck topology with which the presheaves become sheaves.
See Table 5.1 for the analogy.

Since a monetary value measure is a presheaf, if we have a set of
good monetary value measures (= the monetary value measures that
satisfy a given set of axioms), we may find a Grothendieck topology
with which the monetary value measures become sheaves. We will
see a concrete shape of the Grothendieck topology in Section 5.1.

Now suppose we have a weak topology that makes given func-
tions continuous. This, however, does not imply the fact that any
continuous function w.r.t. the topology is contained in the originally
given functions. Similarly, Suppose that we have a Grothendieck
topology that makes all monetary value measures satisfying a given
set of axioms sheaves. It, however, does not mean that any sheaf
w.r.t. the Grothendieck topology satisfies the given set of axioms.
We will investigate this situation in Section 5.2.

5.1. A Grothendieck Topology as Axioms. The following two sub-
sections are devoted to standard or straightforward discussions in
the context of sheaf theory. However, we think it is worth to record
those stuff here since they are new in the context of risk measure
theory.

In this subsection, we see a concrete shape of the Grothendieck
topology with which all monetary value measures satisfying a given
set of axioms become sheaves.

First, we review two concepts of Grothendieck typologies and sheaves.

Definition 5.1. [Grothendieck Topology] A Grothendieck topology J on
χ consists in giving, for each object U ∈ χ, a family J(U ) of subfunc-
tors of the representable functor Homχ(−,U ), satisfying the follow-
ing axioms:

(1) for every U ∈ χ, Homχ(−,U ) ∈ J(U ).
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RV

��

// // Homχ(−,V)
Homχ(−,∗)
��

V
∗
��

R // // Homχ(−,U ) U

DIAGRAM 5.1

(2) for any V ∗ // U in χ and R ∈ J(U ), the presheaf RV defined
as a pullback in Diagram 5.1 belongs to J(V).

(3) let R // // Homχ(−,U ) and Q ∈ J(U ). If we have RV ∈ J(V)

for the pullback defined in Diagram 5.1 whenever V ∗ // U is
in Q(V), then R ∈ J(U ).

Since Diagram 5.1 is a pullback in Set and the cardinality of the
set Homχ(V ,U ) is at most 1, we have for every W → V ∈ χ,

(5.1) RV (W) =

{
{∗WV } if R(W) = {∗WU },
∅ if R(W) = ∅.

Here is a well-known property of Grothendieck topologies.

Theorem 5.2. Let {Ja | a ∈ A} be a collection of Grothendieck topologies
on χ. Then a system J defined by J(U ) :=

∩
a∈A Ja(U ) for every object

U ∈ χ is a Grothendieck topology. We write this J by
∩

a∈A Ja.

Now, we can introduce the concept of sheaves.

Definition 5.3. [Sheaves] A presheaf φ on χ is called a sheaf for a
Grothendieck topology J when, given U ∈ χ and R ∈ J(U ), every
natural transformation X : R→̇φ extends uniquely to Homχ(−,U ).

In the rest of this subsection, we will try to find a Grothendieck
topology for which a given class of monetary value measures speci-
fied by a given set of (extra) axioms are sheaves.

The following proposition assures the existence of a Grothendieck
topology making a given monetary value measure a sheaf.

Proposition 5.4. Let φ ∈ Setχop
be a monetary value measure and U ∈ χ.

Define a set of subfunctors Jφ(U ) by
(5.2)

Jφ(U ) :=
{

R // // Homχ(−,U ) | ( ∀V ∗ // U in χ)

RV // //

∀X
��

Homχ(−,V)

∃!Yxx
φ

}
where RV is a presheaf making Diagram 5.1 a pullback. Then, Jφ is the
largest Grothendieck topology for which φ is a sheaf.
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Proof. Refer Example 3.2.14c in [Bor94]. □
By combining Proposition 5.4 and Theorem 5.2, we have the fol-

lowing corollary.

Corollary 5.5. Let M ⊂ Setχop
be the collection of all monetary value

measures satisfying a given set of axioms. Then, there exists a Grothendieck
topology for which all monetary value measures in M are sheaves, where
the topology is largest among topologies representing the axioms. We write
the topology by JM.

Proof. Let JM :=
∩

φ∈M Jφ. Then, it is the largest Grothendieck topol-
ogy for which every monetary value measure in M is a sheaf. □
5.2. Complete sets of Axioms. Let A be a fixed set of axioms. Then,
for a given arbitrary monetary value measure φ, can we make a good
alternative for it? In other words, can we find a monetary value
measure that satisfies A and is the best approximation of the original
φ? This is the theme of this subsection.

For a Grothendieck topology J on χ, define Sh(χ, J) ⊂ Setχop
to be

a full subcategory whose objects are all sheaves for J. Then, it is well-
known that there exists a left adjoint πJ in the following diagram.

(5.3)

Sh(χ, J) // // Setχop

πJ
oo

πJ(φ)

∈

φ

∈

�oo

The functor πJ is well-known with the name sheafification functor,
which comes with the following limit cone:
(5.4)

. . . // Nat(R, φ)
Nat(α,φ)

//

Sφ
R

))SSS
SSS

SSS
SSS

SS
Nat(Q, φ)

Sφ
Q

uukkkk
kkk

kkk
kkk

k
// . . .

πJ(φ)(U ) := colimR∈J(U ) Nat(R, φ)

for α : Q → R in Setχop
. It also satisfies the following theorem.

Theorem 5.6. (1) πJ(φ) is a sheaf for J.
(2) If φ is a sheaf for J, then πJ(φ) ≃ φ.

Theorem 5.6 suggests that for an arbitrary monetary value mea-
sure, the sheafification functor provides one of its closest monetary
value measures that may satisfy the given set of axioms. To make this
certain, we need a following definition.

Definition 5.7. Let A be a set of axioms for monetary value mea-
sures.
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(1) M(A) := the collection of all monetary value measures sat-
isfying A.

(2) M0 := the collection of all monetary value measures.
(3) A is called complete if

(5.5) πJM(A)
(M0) ⊂ M(A).

By Theorem 5.6, we have the following main result.

Theorem 5.8. Let A be a complete set of axioms. Then, for a monetary
value measure φ ∈ M0, πJM(A)(φ) is the monetary value measure that is
the best approximation satisfying axioms A.

Now, we want to expect that some of the well-known sets of ax-
ioms such as those for concave monetary value measures are com-
plete. If we restrict the category χ to the category that is not allowed
to vary its probability measures, i.e. no uncertainty version, then
we have a counterexample for a quite small Ω [Ada12]. However,
we have no significant result so far for the current version of χ that
accepts uncertainty.

6. CONCLUSION

We introduced a category χ that represents varying risk as well
as uncertainty. We gave a generalized conditional expectation as a
contravariant functor on χ.

We specified a concept of monetary value measures as a contravari-
ant functor on χ. The resulting monetary value measures satisfy nat-
urally so-called time consistency condition as well as dynamic pro-
gramming principle.

Next, we showed a concrete shape of the largest Grothendieck
topology for which monetary value measures satisfying given ax-
ioms become sheaves. By using sheafification functors, for any mon-
etary value measure, we constructed its best approximation of the
monetary value measure that satisfies given axioms in case the ax-
ioms are complete.

As a list of future’s investigation, we will try to formulate a robust
representation of concave monetary value measures within the cat-
egory χ. We also seek the possibility to represent each individual
axiom of monetary value measures as a specific Grothendieck topol-
ogy which may give us an insight about different aspects of the ax-
ioms of monetary value measures. And then we will investigate the
completeness condition against the important sets of axioms such as
those of concave monetary value measures.

REFERENCES

[Ada12] Takanori Adachi, A note on risk measure theory from a category-theoretic
point of view, RIMS Kokyuroku 1818 (2012), 163–180.



CATEGORICAL RISK MEASURE THEORY 17

[ADE+07] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, David Heath, and
Hyejin Ku, Coherent multiperiod risk adjusted values and Bellman’s princi-
ple, Ann. Oper. Res. 152 (2007), 5–22.

[ADEH99] Philippe Artzner, Freddy Delbaen, Jean-Marc Eber, and David Heath,
Coherent measures of risk, Mathematical Finance 9 (1999), no. 3, 203–228.

[Bor94] Francis Borceux, Handbook of categorical algebra 3: Categories of sheaves,
Encyclopedia of Mathematics and Its Applications, vol. 53, Cambridge
University Press, 1994.

[Bre77] Siegfried Breitsprecher, On the concept of a measurable space I, Applica-
tion of Sheaves: Proc. Durham (M. P. Fourman, C. J. Mulvey, and D. S.
Scott, eds.), Lecture Notes in Mathematics, vol. 753, Springer-Verlag,
1977, pp. 157–168.

[DS06] Kai Detlefsen and Giacomo Scandolo, Conditional and dynamic convex
risk measures, Working paper, 2006.
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