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Abstract

We derive the valuation formula of a European call option and
the analytical approximation formula of its American counterpart on
the spread of two cointegrated commodity prices, based on the GSC
(Gibson-Schwartz with cointegration) model. In the numerical analy-
sis, we compare the spread option values calculated by the GSC model
and the GS (Gibson-Schwartz) model that ignores cointegration. Con-
sistent with the intuition that the cointegration prevents the prices
from diverging, the GSC model prices the commodity spread option
with longer maturity lower than the GS model. Thus, incorporat-
ing cointegration is important for valuation and hedging of long-term
commodity spread options such as large scale oil refining plant devel-
opments.
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1 Introduction

Commodity spread option is an option on a spread of two commodity prices
which gives oil energy companies or resource refinery companies a useful tools
to hedge their business risk. Examples of commodity spread options are
crack spread options on crude oil and petroleum products such as heating oil
and spark spread options on electricity and gas. As one may guess, those two
commodity prices in the examples may be related to each other. Thus, cointe-
gration is a promising tool, which is yet to be studied in the area of derivative
pricing. Indeed, Girma and Paulson (1999) find evidence of cointegration in
crude oil, unleaded gasoline, and heating oil. Fezzi and Bunn (2009) examine
the relation of electricity, gas, and emission allowances through cointegration.
These empirical papers suggest that commodity spread options should be an-
alyzed within the framework of cointegration.

However, few academic literature on commodity spread options have an-
alyzed cointegrated prices. Wilcox (1990), Shimko (1994), Pearson (1995),
and Nakajima and Maeda (2007) all have their distinctive characteristics,
but cointegration is out of the scope of these papers. Dempster, Medova,
and Tang (2008) derived a valuation formula by assuming a spot spread
process. But, this is not enough for incorporating cointegration, since their
model starts from the spread and does not explicitly consider log commodity
prices with unit root process. Thus, a model for commodity spread options is
called for that incorporates cointegration, or more generally linear relations,
between log commodity prices.

Independently of this paper, Casassus, Liu, and Tang (2013) develop a
commodity pricing model with linear relations between commodity prices. To
check the validity of their model, they conduct some Monte Carlo simulations
to calculate prices of European commodity spread options. However, they
do not analytically investigate the valuation of commodity spread option and
the effect of cointegration.

In this paper, based on our earlier paper, Nakajima and Ohashi (2012)
that incorporate cointegration into a commodity pricing model, we develop
a model of commodity spread options with linear relations between com-
modity prices. We derive a semianalytic formula for European commodity
spread options and provide an approximation formula for American commod-
ity spread options. We also investigate properties of spread option prices by
conducting sensitivity analyses and show that the commodity spread option
price that incorporate cointegration is much lower than the one that ignores



cointegration for longer maturity.

More precisely, we use two models to analyze commodity spread options.
One is the GS model (1990), which is the benchmark of commodity derivative
models. The other is the GSC model (the GS with cointegration model) de-
veloped in our preceding paper, Nakajima and Ohashi (2012), which extends
the GS model to incorporate linear relations between commodity prices. We
derive the valuation formulae for European commodity call spread options
from both models. Furthermore, we provide an analytical approximation for-
mula for American call commodity spread options for the GSC model using
the framework of Bjerksund and Stensland (1994). Finally, using the param-
eter values empirically estimated in our previous paper, we conduct a nu-
merical analysis and investigate characteristics of commodity spread options
with and without cointegration. The result is simple but critical. If there is
cointegration among commodity prices, then the price of commodity spread
option with long maturity, such as 3 years or more, using GS model (without
cointegration) will be considerably overpriced than that of the GSC model
(with cointegration). Since oil related and/or electrical power development
projects take a long time until commercial use, the misprice of commodity
spread option with long maturity should not be tolerable. Thus, the pricing
model of spread options incorporating cointegration such as this one can be
a better tool of valuation and risk management for these business than the
standard models that ignore cointegration.

This paper is organized as follows: Section 2 formulates the model and de-
rives the valuation formula for European call commodity spread options and
the analytical approximation formula for American ones. Section 3 provides
the numerical analysis. Section 4 concludes.

2 A Model for Commodity Spread Options

2.1 The Gibson-Schwartz (GS) Model

We first derive the pricing formula of a spread option for the GS model that
does not incorporate cointegration. Assume that there are n commodities
whose spot prices and convenience yields follow
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under the risk-neutral probability. Here, r is the risk-free interest rate, which
is assumed to be constant. Also, og,, K;, &;, and o5, are constant coefficients.
W(t) = [Ws, (t),..., Ws, (t), Ws, (), ..., W5, ()] is four-dimensional Brownian
motion under the risk-neutral probability with
dWSi (t)dWSj (t) = psigj dt, dWSZ (t)dW(gj (t) = pgi(sj dt, C”/V(;I (t)dW(sj (t) = p(;i(sj dt,
1,7 =1,2.
We show the futures price on commodity 7 in closed-forms. Note that
under the assumptions above, the spot price of commodity i is calculated as'

S(T) = s@ew{Le D) ®)
X(T) = (r - % - a) (T —t) + WQ )
o5 (W (T) = W, () = -0, (W, (T) = Wi (8)

T e—ni(T—s)
+ / s dWi(s).
; .

Ki

We denote E;|-] as expectation under the risk-neutral probability given F;.?
Using risk-neutrality and the property of moment generating function, we
obtain the futures price of commodity i as follows.

Proposition 2.1. Assuming (1) and (2), the futures price of commodity i
with maturity T at t is given by

Gi(t,T) = E[S;(T)]

where
pg, (6 T) = E[X(t,T)]
= <r — ‘751- — C%-) (T —t) + w(l — 6,m(T,t))

!See Gibson and Schwartz (1990), Bjerksund (1991), and Schwartz (1997) for deriva-
tion.
*We assume a filtered probability space (2, F,{F:}t>0, P).
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and
U?(i (ta T) = Et[( Ai(ta T) - :U’Xl(ta T))2]
2 2
— 2 % 20,5, _ 95 (1 —2ki(T—t)
_ <asi o >(T )+ gl —e )
+9 O-gi + 05;6; (1 —n*(T—t))
- —e " :
KPR
Proof. See Bjerksund (1991). O

A European call commodity spread option between commodities ¢ and
j with exercise price K and maturity 7j is a call option whose payoff at
maturity is given by Maz[h;G; — h;jG; — K, 0] where h; and h; are constants
and G; and G are future prices at maturity. The price formula of this spread
option is provided in the following proposition.

Proposition 2.2. Suppose that S;(t) and 0;(t) follow (1) and (2), respec-
tively. The prices of European call commodity spread options at t with ex-
ercise price K, where the maturities of the spread option, commodity i, and
commodity j futures maturity are Ty, T;, and T}, respectively, are given by

OE(KaGi;GjataToﬂT’i’ij)
= hiGi(t,T;) exp{—r(Tp — t)}
x/ O(d;(x5, K))

Xn(ijXGj GS(ta 1o, TJ) + O-XGZ.XGj GS(ta 1o, T;, TJ)? U?ggj Gs(ta Ty, ij Tj))dxj
—h]‘G]‘(t, T}) exp{—r(Tg — t)}
< [ ot m)

oo

Xn(xj“Lf(Gj GS(t7 TU’ TJ) + U?gcj Gs(t7 TU’ Tj’ T])’ U§2Gj Gs(ta TOa Tja T]))dZL‘]

_Keir(T()it) / q)(d(xj’ K))n(xj“LXGj GS(t7 Ty, T])’ U§2Gj Gs(ta To, Tja TJ))dea

o0



where
s ) = G T+ K) Z Gt T) — g as(t 0. T)
fI;j, = — [
UXGiGS(t’ TU’ T’i’ 7—;)\/1 - piA(GiXGjGS(t’ TU; T;a T'])
T _”XG]_ as(T0,T;)
pXGiXGj GS(t; TO; 7—;7 T’j)O‘)A(GiGS(t’ T[]; T’ia 7—;) UXg_GS(t7T07Ti’E)

_|_

756,05 T To )\ 1= 5% s 65t T T T)

0.2AGiGS(t’T0’T;’T’i) t,T(),T’i,ij

2 2
X _pXGngjgs( )O-)A(GiGS(t’TU’T;’T})

di(xjaK) = d(:Ej,K) +

UXciGS(tﬂ 1o, T, TZ)\/l - p%(ciffcj G’S(t’ Ty, Ts, T])
O-XGiXGj Gs(ta TO? 1—11;7 71])
O-XGZ-G'S(t’ TO’ Ti’ Ti)o—f(G].GS(tv T07 ij Tj) ,

pf(cif(cj GS(t’ TO’ T;" 71]) =

MXGiGS(th) = Et[XGi(taT)]

1
9 O-g'i (TO - t)

—205—@{(]70 _ t) _ i(e*’ﬂ'(Ti*TO) - eni(Tit))}
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and
%o x0,a5(LT) = Bl(Xa:i(t,T) = pg, (6T))’]
= 0s;s5; (To — 1)
_%{(TO —t) — i(e—ﬁj(Tj—TO) — e—ﬁj(Tj—t))}
kj kj
06,5, 1
T {(To 1) = (T e—Wi—”)}
+0.515] (TO o t) _ l(eini(TiiTO) _ 67K/1‘(Ti*T0))
KiRj K;
_i(e—ﬁj(Tj—TO) — e r(Ti7t)
kj
1 (e_ni(Ti—To)—K,j (TJ —To) - e—lﬁ:i(Ti—t)—lﬁ:j (Tj —t)) } )
K; + Kj
We abbreviate O-XGiXGiGS(t’ T) as O-ngiGS(t’ T).

Proof. The proof is basically the same as the proof of proposition 2.4 in the
Appendix. The only differences in that proof are the drifts px,, and the

volatilities O, Xa; A€ Mg as and O%g, Xa,GS respectively. O

Note that while Shimko (1994) derives the theoretical price of commodity
spread options for futures with the same maturities, we allow them to have
different maturities.?

2.2 The Gibson-Schwartz with cointegration (GSC) Model

We now introduce the GSC model developed by Nakajima and Ohashi (2012).
As mentioned, the GSC model is an extension of the GS model and incor-
porates linear relations between log commodity prices. More precisely, we

3Note also that since futures prices are equal to spot prices at maturity, the prices
of European call options on futures spread are equal to those on spot spread when all
maturities of the option and the underlying futures, i.e., Ty = T; = T}.



assume that there are n commodities whose spot prices and convenience
yields follow

2

dIn S;(t) = (r I8 0; (t) + biz(t)> dt + o5,dWs, (1),

2
i=1,...,n, (4)

under the risk-neutral probability.* b;, og,, k;, &;, and o5 are constant co-
efficients. W (t) = [Ws, (t),..., Ws, (t), W5, (1), ..., W5, (t)] " is 2n-dimensional
Brownian motion under the risk-neutral probability with

dWSi (t) dWSj (t) = pgisj dt, dWS, (t)dej (t) = p5i5j dt, del (t) dW(;j (t) = p5i5j dt,

ij=1,...,n.

We assume that the commodity prices are related linearly through

=1

where ji,, ag, and a;s are constants.” Assume that InS; are cointegrated.

Then by rearranging the equation as In Sy (t) = (—p, —agt — Y+, a; In S;(t) +

2(t))/ay (if a1 # 0), z(t) can be interpreted as an error term, a; as cointegra-

tion vectors, and b; as the adjustment speed of the error correction term.
We obtain the futures price under the GSC model as follows.

Proposition 2.3. Assuming (4), (5), (6), the futures price of commodity at
Ty, which matures at T; is

2
O'Xi (t,T)

Gi(taT):euxi(t’TH S

4Notice that while the GS model only concerns two sets of commodity prices and conve-
nience yields, the GSC model may incorporate n sets of commodity prices and convenience
yields linear relations.

5 Although we treat the case where there is only one linear relation between prices,
i.e., the case with one-dimensional z(t), we can extend the model to include several linear
relations.



where
o2
5Si0(t) r—= % + bz/l/z + biaot,
Bs.s; biaj,
BSiﬁi _]-7
Bs;0 KiQ,
55@- — Ky,
IBO(t) [5510(t)7"' 755n0(t)765107"' 755n0]T7
[ Bsis, Bsis, Bsio 0 7
Bs, s, 55;5,1 0 Bs,.6,
p Bs.6, 0 ’
0
L 0 B5,5,
px,(t,T) Ey[ln S;(T)]
[ T
eTB{e_tBX(t) +/ e_sﬂﬁo(s)ds}] ,
L t i
ox:x; (t, 1) Ef(InSi(T) — px, (¢, 7)) (In S5(T) — px, (¢, T))]

/T(e(Ts)ﬂ)E(e(Ts)ﬂ)Tds] ,
t

ij

See Nakajima and Ohashi (2012) for the proof. We use the notation for ex-

pectation px, (¢, To, T;) = Ei[Xe, (¢, To, T3)] and covariance OXa, X, (t, Ty, T3, T;) =

Et[(XGi (ta To, TZ) ~HXg, (ta To, TZ)) (XGj (ta Ty, TJ) _MXG]- (ta To, Tj))] These are
calculated in the Appendix.
Let us now show the price formula for a European commodity spread

option.

Proposition 2.4. Under the GSC model, the prices of the Furopean call
commodity spread option at t with exercise price K, where the maturites of
spread option, commodity i, and commodity j futures are Ty, T;, and Tj,
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respectively, are given by

CE(Ka Gi; Gja ta T07 T’i’ T'J)
= hiGi(t,T;) exp{—r(Tp — t)}

X / @(di(xjv K))n(xijcj (tv T, TJ) + O-XGiXG]- (ta Ty, Ti, TJ)? O-g(cj (ta 1o, ij Tj))dxj

o0

—hiG;(t, Tj) exp{—r(To — 1)}

< [ @ty Kl e, (.10, 1) + %, (50,85, 8). 0%, (650,75,

o0

— K770 / O (d (), K))n(wjlixg, (. To, Tj), 0%, (8, To, T, Tj))daj,

o0

ln(hje"’"f + K) —In hl — MXGi (t, tg, T;)
oxg, (t, To, T, Tz-)w — g, x0, (610, T, T)
Tj—px ,(t;TO;Tjj)
pXGiXGj (ta TU) T;; T’]')O-Xgi (t7 TO; T’i; T’z)m
_|_ J
O-XGi (ta TO) T'ia 1—11,)\/1 - p2XGngj (ta TO) T'ia T'])

%, (6 T0, Ty To) = g xq, (1o, Ty Ty) ok, (6T, T, )
756, (T, T T) /1 = P xg, (6T, T, T)
Oxe, g, (t: To, T3, T)

oxg, (610, T;, Ti)oxg, (1, To, Tj, T;)

di(xj; K) = d(.fU],K) +

)

pXGiXGj (ta TO, 1—11;7 7—']) -
and pxg (6, T) and ox, Xg (t,T) are in the Appendiz. We abbreviate ox, x¢ (t,T)
as ok, (t,T).
Proof. See the Appendix. O

Since the spread options traded in the actual markets are the Ameri-
can type,® we also show an approximation formula for American commodity
spread options. The derivation is in the Appendix.

6A crack spread option such as heating oil/crude oil and RBOB gasoline/crude oil,
which are traded on the NYMEX, are both American types.
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Proposition 2.5. Under the GSC model, the price of the American call
commodity spread option at t with exercise price K, where the maturities
of spread option, commodity i and commodity j futures, are Ty, T;, and T},
respectively, is approximated as follows:

where

Q

CA(Ka Gia G]a ta TO? 1—11;7 T'])
= OE(K7 Gia Gjata TU) T'zaT’]) + aA(Ka Gia Gjata TU;T’ia Tv]a Bc,s),

aA(Ka GiaajataTU;T’iaij;Bc’s)
To 1

r hi/ exp —r(u—t)+uXGi(t,u,Ti)—l—iag(c_(t,u,Ti,Ti)
t 7

« / B(deps (2, 1, K))

o0

Xn(x]mXG (t,u, Tj) + oxg, Xe (t,u, 13, T;),0 (t u, T;, Tj))dxz;du
Ty 1 )

_hj/t expq —r(u —t) + [ixe, (t,u, T;) + 59X, (t,u,T;,Tj)

« / B(dyopn (25, 1, K)

oo

xnx]mXG (t,u,Tj) + 0%, (tuT Tj),0 (tuT T;))dxjdu
To
—K/ (u— t/ q)(deepl(l‘jauaK))

xn(xjmxaj (t,u, Tj), O'XG (t,u, T} T))dxjdu],
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and
In(h;Bje"i + BgK) —Inh; — pix, (¢, u,T;)
O-XGZ. (ta u, 1—11,) \/1 - p%(GiXG]_ (ta u, 1—11;7 T'])

deepl (-'L.ja u, K) =

PXGZ.XGj (ta Uu, T'ia E)UXGZ. (ta u, 1—11,)

O—XGj (t’u7Tj 7T])

O-Xgi (ta u, T’z) \/1 - ngGiXGj (ta u, T’ia T'j)

+

(]' - p%(GiXG]_ (ta u, 1—11;7 E))Ug('cl (ta u, 1—11;7 T'Z)

deep2(mja u, K) = deepl (-'L.ja Uu, K) +
O-XGi (ta u, T'Z)\/]- - p%(Gngj (ta u, T'ia 1—1])

Proof. See the Appendix. O

The formula is the same as that for the GS model. The only differences
are drifts Pxe, and volatilities OXg,Xg,; are changed to IXe,GS and OXg,Xe, GS)
respectively.

Note that the preceding models such as Shimko (1994) and Nakajima
and Maeda (2007) did not consider the linear relations between prices. How-
ever, empirical analyses such as those of Malliaris and Urrutia (1996) and
Girma and Paulson (1999) show evidence of cointegration. Therefore, the
commodity spread option should be priced by incorporating the cointegra-
tion or more generally a linear relation between log commodity prices. The
valuation formulae for European and American call options that we derive
in this subsection incorporate linear relations between commodity prices.
These linear relations are interpreted as equilibrium or long-term relation-
ships. Thus, the valuation formulae derived in this subsection reflect the
long-term equilibrium in derivative pricing.

Note that a commodity spread option is an option on two commodity
prices such that the spread relation is fixed within the contract. However, this
fixed spread relation may be different from the linear relation corresponding
to, say, cointegration, which we cannot observe and need to estimate. Fur-
thermore, such differences between the spread relation and the linear relation
may affect the spread option price. Thus, in order to price a spread option,
it is not appropriate to start by directly assuming a stochastic process that
a commodity spread must satisfy. It is important to start by formulating
the stochastic processes that the commodity prices satisfy with some linear
relation, and then to derive the price of the spread option.
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3 Numerical Analysis

In this section, we numerically analyze the valuation formula of a European
commodity future spread option. We use the following parameter values
for crude oil (commodity 1) and heating oil (commodity 2) as the bench-
mark. Those values are estimated in Nakajima and Ohashi (2012) using the
NYMEX data from 1990 to 2010.”

G1(t,Ty) = 35,Gs(t, Ty) = 100,

hi=1,hy =0.42,

o5, = 0.381896, 05, = 0.406307, 05, = 0.287109, 075, = 0.699693,
ps, s, = 0.748660, ps,5, = 0.767305, ps,s, = 0.000072,

ps,s, = 0.628424, ps, 5, = 0.620154,

P56, = 0.165843,

ay = —1.187431, a5 = 1.000000, b; = —0.052615, b, = —0.356252,
k1 = 1.140883, Ky = 1.085038,

T, = 1250/250, T, = 1256/250, T, = 1266250,

K =3,r =0.04.

We examine the valuation of the spread option using the GSC model and GS
model. The effect of linear relation, or cointegration under certain conditions,
can be seen by comparing the GSC model with the GS model. Although the
linear relation may include two or more commodity prices, here we assume
that there are only two commodity prices in the linear relation.

Figure 1 illustrates the theoretical prices of commodity spread options on
futures prices. We can see that the prices of the GSC model are lower than
in the GS model. This is because the cointegrated prices tend to revert to
satisfy the long-term relationship and hence do not diverge.

Sensitivities of commodity spread option prices to g, and og, are shown
in Figure 2. The price calculated by the GSC model exhibits a u-shaped curve
for both og,. Again, the prices of spread options obtained by the GSC model
are lower than those in the GS model. This implies that the cointegration
relation is in effect. That is, the long-term relationship force the commodity
prices not to diverge.

"hi =1 and hs = 0.42 are taken from the NYMEX crack spread between WTI crude oil
and heating oil. Note that the payoff of this call spread option at maturity is Maz[haG2 —
hiG, — K,0].
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Figure 2: Sensitivity of commodity spread option to og, and og,. The solid
line shows the prices of commodity spread options obtained by the GSC
model and the dashed line shows the prices by the GS model.
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In Figure 3, we report the sensitivity of commodity spread option prices
with respect to b; and by. For by, the price exhibits a bell-shaped curve.
There is a point where the price by the GSC model become larger than
that of the GS model. This point is near the value where b(= bya; + byas)
become positive which means that the GSC model is not cointegrated.® Also
b; have effect to the volatility of future price in a non-linear manner.® As |b,|
increases (i.e., as by decreases), the commodity spread option price decreases.
The higher the absolute value of adjustment parameters is, the more quickly
the spot price reverts to its long-term equilibrium level. In our setting, this
reduces the spread and hence the price of spread option decreases. Again
there is a point where the price by the GSC model become larger than that
of the GS model which is occurs at the point where the value b become
positive.

Figure 4 shows the sensitivity to ;. Here again, the prices calculated by
the GSC model are lower than those of the GS model. The price in sensitivity
analysis of k9 seems to converge to a certain level. For k;, the result imply
that the prices of commodity spread option calculated by the GSC model
may have already converged.

Finally, and most importantly Figure 5 shows the sensitivity of prices to

8For the GSC model to be cointegrated, we need b < 0. This is discussed in Nakajima,
and Ohashi (2012).
9See equation (8).



16

Figure 3: Sensitivity of commodity spread option to by and by. The solid line
shows the prices of commodity spread options obtained by the GSC model
and the dashed line shows the prices by the GS model.
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Figure 4: Sensitivity of commodity spread option to x; and k2. The solid line
shows the prices of commodity spread options obtained by the GSC model
and the dashed line shows the prices by the GS model.
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maturity. For GSC model, the option price have a inversed u-shaped curve.
On the other hand, the option price by the GS model rises as maturity
becomes longer. Notice that the longer the maturity is, the larger is the
difference between the prices obtained by the GSC model and those of the
GS model. The price obtained by the GSC model is about 1.5 time larger
than those of the GS model when the maturity is around 6 years. This
is because the cointegration relation prevents the commodity prices from
diverging and hence makes the value of commodity spread options lower for
longer maturities.

This result has imporant implication. That is, if cointegration exists,
the GS model overprices the commodity spread option especially with longer
maturities. Since the long-term commodity derivatives are often considered
as useful tools to hedge risk against long-term projects such as large-scale oil
refinery developments, it may be more appropriate to use the GSC model that
incorporates cointegration rather than the GS model when pricing long-term
derivatives.

4 Conclusion

In this paper, we derive a valuation formula for European call commodity
spread options and an analytical approximation formula of American call
commodity spread options when commodity prices are cointegrated based on
the GSC model developed by Nakajima and Ohashi (2012). We also derive
the valuation formulae of commodity spread options for the GS model, which
does not take account of cointegration, and compare the results for the GS
and the GSC models.

With numerical analysis using the parameter values estimated in Naka-
jima and Ohashi (2012), we show that the prices of the commodity spread
options given by the GSC model are lower than those of the GS model in
most cases. This is because cointegrated commodity prices tend to revert to
the long-term equilibrium level and hence do not diverge, which lowers the
spread and hence the value of the spread option. The GSC model captures
this phenomenon.

We also analyze the sensitivities of the commodity spread option price to
the change of several parameter values. Among them, we find that as the ma-
turity becomes longer, the difference between the price obtained by the GS
model and that by the GSC model becomes larger, where the former is larger
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Figure 5: Sensitivity of commodity spread option to maturity. The solid line
shows the prices of commodity spread options obtained by the GSC model
and the dashed line shows the prices by the GS model.
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than the latter. This is again because the cointegration relation prevents the
commodity prices from diverging. However, we also find that for shorter
maturity, the spread of price options obtained by the GS model is smaller
than that of the GSC model, which is consistent with Casassus, Liu, and
Tang (2013). This implies that the GS model may overprice the commodity
spread options for the longer maturity without taking account of cointe-
gration. Since the long-term commodity derivatives are often considered as
useful tools to hedge risk against long-term projects such as large-scale oil re-
finery developments, it may be more appropriate to use the GSC model that
incorporates cointegration rather than the GS model when pricing long-term
derivatives.

For future studies, further empirical analysis of derivative pricing that
takes account of cointegration seems promising. In addition, it is interesting
to see how cointegration affects prices of other types of derivatives such as
a basket option, which is a generalization of a spread option. Incorporat-
ing other economic factors into the model, such as foreign exchange and/or
interest rates also seems an important direction for future research.



20

5 Appendices

5.1 Expectation and Covariances of Log Futures Re-
turn

In this subsection, we derive the futures price and expectation value and
covariance of log futures return. We use the future price equation written
in terms of spot price and derive the future price process using Ito’s lemma
written in terms of futures price. This price process can be explicitly written
in terms of futures price levels. Finally, we calculate the expectation and
covariance of stochastic terms of futures price using properties of stochastic
calculus.
Note that futures price in terms of spot price is'®

ag(i (t,T)

Gy(t,T) = etx:lbTT =5

where

o2
ﬁgio(t) = T — + bz,uz + biagt,

2
Bss; = biay,
Bs;s; = —1,
Baio = R,
Bs;s. = —ki,
Bot) = [Bsio(t), - Bsno(t), Bsos -+ Bono) |
[ Bsisy 0 Bsis, Bsia 0
B - Bs,sy ++ Bsps, 0 B5,5,
Bs.6, 0 ’
L O 0 Bnén

10See Nakajima and Ohashi (2012) for derivation.
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i (LT) = EnS(T)
= eTﬂ{etBX(t)—f—/Tesﬂﬂo(s)ds}] )

t

ox;x; (t,T) = E:t[(ln Si(T) — px; (8, 1)) (I S;(T) — px, (¢, T))]
= /T(e(T—S)/B)g(e(T—S)/B)TdSI

i

The partial derivatives are

(T
0G;(t,T) _ [6 ]z’,jG_(t T)
95;(t) Si(ty U7
Gt T) _ [ 0B |
8(5]' (t) - [6 :| i,n+j G] (t, T),

where we denote [A]; ; as [4, j] th entry of matrix A.

Since the futures price G;(t,T’) is a function of S;(t),0;(¢) and twice dif-
ferentiable, we can use the Ito’s lemma and the dynamics of future price
is

< aG; "G,
dGi(t,T) = Y o, Sk(t)a—&chSk )+ oy, a—ékdwgk (1),
k=1 k=1

where the drift term is 0 since G;(¢,T) is martingale under the risk-neutral
probability.
Again, using Ito’s lemma we have,

dlog G;(t,T)

_ _%{ Xn: 055, [e(T_t)B]i,k [e(T_t)B]

il

k=1
9 { (T%)ﬁ] [ (T%)ﬂ]

+ 1;105k5l € ik € i+l

+ Z 06,6, [G(Tft)ﬁ] [G(Tft)ﬁ] dt
Pt in+k i+l

3

+zn:ask (TP AW (1) + Y os, [¢TOP] s, (o).
k=1 "

1 i,n+k



The futures price can be expressed as follows.
Gi(Ty, Th) = Gi(t, Tye o101, ¢ < Ty < T,
where

XGi(ta TO)E) = /‘LXGZ- (taT()aJ—’i)

+ /tTO Xn:agk [e(Ti_t)ﬂ] dWs, (u)

ik
k=1

Ty N
+/t o S o [e(Ti—t)ﬁ]i7n+k AW, (u).

k=1

The expectation value is

:uXGi (t7 TO; T’z) = Et[XGi (t7 TO) Tvz)]

L] M . .-
_ _5{ /t kZO’SkSz [em )ﬂ]i’k [em )ﬂ]z‘,ldu

J=1
[e(Ti’“)ﬁ ] du

i,n+1

n

To
+2/ E 05,4, [e(Ti’“)B]
t

i k
k=1 "

BN (T—u)B (T—u)B
T, —u —
% i d .
+/t Z To0 [6 ]i,n+k [6 ]i,n+l “

k=1

The covariance of XGi (t, Ty, T;) and XG]. (t,To,T}) is

O.XGiXGj (ta TO; T;; T’]) = Covt[XGi (t7 TO; T’Z)a XGi (t7 TO) T'])]

To T
_ / > oss [(98] [d9B) ay
t 2, 7l

k=1
n

N / " o e8] (@8]

k=1 gt
=

n

+/tTO Z 75,5, [e(Tf_“)ﬂL,l [e(Ti_“)B] du

b=l i,n+k

n

To

el
k=1 gt

22
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5.2 Proof of Proposition 2.4

In this subsection, we prove Proposition 2.4. This is done by the follow-
ing scheme. What we need to calculate is the expectation which can be
expressed in terms of double integrals, since we are only dealing with the
bivariate Gaussian processes. We know the expectation and covariance of
the stochastic parts as we mentioned previously. The integrals can be calcu-
lated using multivariate version of completing squares, decomposing bivariate
normal joint distribution in to conditional distribution and marginal distri-
bution, and changing of variables. Finally, collecting all the terms, we have
the pricing equation.

From Harrison and Kreps (1979) and Harrison and Pliska (1981), the
price of commodity spread option at ¢, which option maturity is 7j, futures
maturity for G; and G; are T; and T}, respectively, is

CP(K, Gi, Gy, t,To, Ty, Ty) = e " E[(Gi(To, To) — hyGi(To, Ty) — K)*).
The expectation value can be calculated as follows.
E[(hiGi(To, T;) — h;Gi(To, Tj) — K)™]
= [ (WGt T)e" WG Ty)e — Kn(al g, Sa)de
D

where
_ o }
T = ,
. :L.Z
_ [ /I/Xgi (ta TO,E)
P i /'LXGj (taTUaTj) ’
5 B [ Ug(Gi (t, 1o, T3, T;) OXe; Xa; (t’TU’Ti’Tj)
r - O-XGiXG]- (taT()aT'iaj—’j) U%(Gj (t7T071—1]"T'j) ’
and

D = {$|hZGZ(t,T;)GIZ — thj(t,ij)GIj - K Z 0}
{zld(z;) < @i},
ln(thj(t, Tj)e"”f + K) — ln(hZGZ(t, 7-;))

a
8

E.

=
1
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We now calculate the integrals. Suppose that e; is unit vector which the
1th row is 1.

/ e'in(x|py, Xx)de
D
_ _1 1 _
= [ en) el exolela - (o o) B4 (@ — )l
_ _1 1 _
= [ en Rl exolel e + ] (0~ o) — 5@ — 1) i (o — g o

1
= /(27)_1|2m|_% eXP{eiTN:B + iegzwei
D

1 _
—5(51: —py — Zze) T — pg — E;Bei)}dm

1
= eXp{/LXGi (taT())jTi) + §U§(Gz (ta TO,E)E)}

1 1 _
X / (27r)’1|2;1g|’5 exp{—i(:p — By — Zmei)TEml(m — pp — Xge;)}dr.
D

The integral can be expanded as follows. We omit the time prameters for
simplicity.

_ _1 1 _
/D(27T) 1|2:13| ? exp{—§(az — MKy — Ewez’)TEml(m ~— MKy — Ewez’)}dm
[T e ST Paoxa ) 1
= ™ OX~.0OX . — Px.. . exXpy —
—00 d(CEj,K) G; G XGlXGJ 2(1 — pXGiXGj)
C_ _ 42 2 L 2
Ti — UXg, O-XGZ-) ) Ti = PUXa, — Oxg,
X —
O-Xci pXGiXGj UXGi
o . o . 2\ 2
X 1T WX T OXeX, + DT ey T OXaiXs, dx;dx;
O'XG]_ O'XG]_
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X exp{ — d;

2
1(%j = HUxXg, — OXg,; Xq,
x(27r)_%a;(élexp{—§< d % “ GJ) }da:j
J

2
1% — HXg, — OXg,Xq,
x(27r)_%a;(élexp{—§< ’ o “ G’) }da:j
J

O'XG]_

= [ @iy, KDy, + 05,50, 7

Tj—PXg. ~O0Xqg. Xq.
i G; G Xa;

d(xia K) - :uXGi - U%(Gi - pXGiXGj UXGi oX¢
di(xj’ K) = - - )

and we used change of variables in the third equation. Other integrals can
be derived in the same manner. For the second integral,

1 .
/D(27r)_1|2m|_% exp{—§(az — g — Zxe;) S (T — pg — Ea;ej)}dm

= [ @ty Kol + 0%, 0%,

o0
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where

2

mj_MXG _O—XG

. _ _ _ J J
d($tv K) MXGi O-XGiXG]- pXGiXGj O-XGi

dj(zj, K) = — =

And the last integral is

/D(QW)IIE:H% exp{—%(w —pg) Bg (x - um)}dw

= [ @y, KDl o,

o0

where

Cvj—MXG],

d(xia K) — HXg, — pXGiXGj 0Xg, oxg,

di(zj, K) = —

O-XGi (]' - p2AX'GiXGj)
Collecting all terms, we have
CE(Gla G]a ta TO? 1—11;7 71])
= hGi(t,T;)exp{—r(Ty — t)}

oo

—h;G;(t,T;) exp{—r(To — t)}

< [ o K)o, (0T ) + 0 s, (6T T T5), 0%, (6T, T3, T

< [ @dag K nlalig, (0T Ty) + 0%, (0T, T3 T5), 0%, (650, T3, T5)d

~Ke 0 [ e K)ol (6T, T), 0%, (8. T T5.T) )y,
lH(thj(t, 7}')617 + K) - ln(thz(t,T;)) - /,LXGZ_ (t, to, E)
O-Xgi (t7 TO; T’i; T’Z)\/l - P%{Gixgj (t7 TO; 7—;7 T’])

Tj—hXg, (t,To,Ty)
O—XG]- (t’TO ;Ti 7T])

O.XGi (t7 TO; T;; T’Z)\/l - P%{Gixgj (ta TU; 7—;7 T’])

pXGiXG]. (t; TO; T;; T’j)O-XGi (t7 TO; T’ia 7—;)
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Ug(ci (ta TO) ﬂa 1—11,) - p2XGiXG]_ (ta TO) ﬂa E)Ug(ci (ta TO) ﬂa 1—11,)

756, (T, T T) /1 = P xg, (6T, T, T)
OXg, Xq, (t, Ty, T;, T})
O-XGi (ta TO) ﬂa E)UXGj (ta TO? 1—1]'7 71]) .

di(xj; K) = d(.%'],K) +

)

pXGiXGj (ta TO, 1—11;7 71]) =
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5.3 Analytical Approximation for American Commod-
ity Spread Option

In this subsection, we propose an analytical approximation pricing formula
for American commodity spread option. The difficulty is the calculation
of early exercise premium, more precisely the domain of integration or the
condition inequality of exercise which are not analytically tractable. There-
fore, we use the scheme of Bjerksund and Stensland (1994) to approximate
the condition inequality which split spread option in to two call option that
the first option has stochastic exercise price and then use Barone-Adesi and
Whaley (1987) framework to approximate the two American option. The
formula can now be calculated as we did in European call option which de-
rives the analytical approximated pricing formula for American commodity
spread options.

From Broadie and Detemple (1997) the valuation of American spread
options are'!

CA(Ka Gia G]a ta TO? 1—11;7 T'])
= sup Ble T (WGi(r, T) — hyGy(r, T;) — K)*]

TESt,To

= CE(Ka Gia GjataTﬂaj—'iaJ—’j) + aA(Ka Gia GjataT()aJ—’iaij; BC,S)’

where S, 1, is the class of stopping times of the filtration generated by the
underlying the Brownian motion processes, the early exercise premium a is

defined by
aA(Ka Gia Gjata TU) T;a Tv]a Bc,s)

To
= E / e "0 (rh Gy, T;) — rhyGy(u, Tj) — rK)
¢

XL n,Giu,T)> Bes (G (u,Ty)u)} AU

To
_ ., / e "N By [(hiGi(u, Th) — hyGy(u, Ty) — K)
t

X hGi(u,T3)> B (G (u,Ty ) )} AU,

1Gee also Detemple (2006), Section 6.4. In this section, we have omitted some time
parameters.
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and B“*(-,-) is a solution to the integral equation
Bc’s(Gj(ta 1—1])7 t) - K= CE(Ka Gia BC,S, t, TO) T'ia 1—1]) + aA(Ka Gia BC,S) t TO? 1—11;7 T']’ BC,S)?
subject to

PHTI BC’S(Gj(t’ Tj)a t) = maX(Gi(ta TZ) + K, Gj(t’ TJ) + K)a
_)
B“*(0,t) = B(t)
Bi(t) = inf{G,(t,T;) : CXK,G;, G, t,Tp, T;, Tj)
= (hiGi(t,T;) — h;G;(t, T;) — K)"}.
Now, we addopt the framework of Bjerksund and Stensland (1994)'? to
approximate the early exercise premium.

Ey[(hiGi(u, T3) — hiGj(u, Tj) — K)LinGi(um)>Bes (G um)w)}]
~ Et[(hiGi(ua Tl) - thj(u? TJ) - K)1{hiGi(u:Ti)2thjGj(’Uqu)‘FBKK}]’

b

where
B; = B(T, —u, ag(ai (u, Ty) — 20X¢, Xa, (u, Tp) + ag(Gj (u, Tp)),
Bx = B(Ty - u,0%, (u,Tp)),
B(t,0*) = ") 4 (1— ")) By (%),

__B(@?
Pl = Fon—t
1 1 2r
Blo?) = 5 TV1 T o2

h(t,0%) = —20Vt(B(c?) —1).

The approximation is constructed in two steps. The first step is to split
the spread option into an exchange option and vanilla type option. And
the second step is due to Barone-Adesi and Whaley (1987) framework of
approximating American option.

Note that the exercise region is

hiGi(u, T;) > h;B;Gj(u, Tj) + Bk K
© 3 < deepo(;, u, K) = In(h; B;G;(t, Tj)e™ + B K) — In(h:Gi(t, T)).

12They have also analyzed the performance of their approach.
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The integrals of early exercise premium can be calculated just as the
integral of European commodity spread option which we now have

Q

where

deepl(xjaua K) = -

at(K, Gy, Gy, t, Ty, Ty, Tj; B**)
To

T B [(hiGi(u, Ty) — hiGy(u, Ty) — K)

Xl{hiGi(u,Ti)ch,s(Gj u,Tj),u)}]du
To

r e_T(u—t)Et[(hiGi(u, 7—;) — h].G]. (’LL, T’]) _ K)
t

Xl{wisdeepo(xj,u,f()}]du

8

x/ D(deep2 (5, u, K))

8

T 1
r | hiGi(t, TZ)/ exp{—r(u — 1) + pxg, (tu, T;) + 5‘7%(@. (t, u,Ti,Ti)}
t 7

Xn(x]mXG (t,u, Tj) + oxg, Xe (t,u, 13, T;),0 (t u, T;, Tj))dxz;du

To 1
—h;G;(t,T)) / exp{—r(u -4+ HXg; (t,u, Tj) + 503((;]. (t, u, T}, Tj)}
t

« /_ " O(dun (25,0, K))

oo

Xn(xj|MXGj (t, u, Tj) +U§(g (t,u, Ty, Ty), UXG (t,u, T, T}))dzjdu
To o0

K / ¢~ru=0) / (doopn (5, 1, K))
t —00

Xn(l‘j“Lch (tauaT) UXG (t u, T T))dl’]du],

hl(thjG]‘ (t, T’j)te + BKK) - ln(hlGZ(t, E))

- /I’Xgi (ta u, 1—11,)

O-Xgi (ta u, 7—;)\/1 - PE(GiXGj (ta u, 7—;7 T’])

O—XGj (t’U/:Tj 7T])

O-Xgi (ta u, T’z) \/1 - ngGiXGj (ta u, T’ia ij)

PXGiXGj (ta u, 7—;) 7—’])0-)(@1 (t7 u, 7—’1)
+
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deepZ(xj;uaK) = deep(xjauaK)
U?(Gi (t7 U’) 7—;7 7—;) - pg{GiXGj (t7 /U’Jj—’i)j—"]‘)o.g(gi (tJ U,j—’i, 7—;)

O-XGZ- (ta u, T'Z)\/]- - pg(Gngj (ta u, 1—11;7 1—1])
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