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Abstract

In this paper, we propose a new random thinning model in a so-called top-
down framework so as to improve credit risk assessment of some sub-portfolios.
Specifically we extend a model of thinning process adjusted with credit quality
vulnerability factors (CQVF) introduced in Yamanaka et al. [6] so that CQVF
can be specified in terms of some time varying observable factors and that the
thinning process can be regarded as a factor model. Some empirical studies on
the proposed thinning process with historical data of credit rating transitions of
Japanese firms show that both “alpha” and “beta” estimated from the TOPIX
sector indices are significant for some sub-portfolios classified by industry. Also,
we try a numerical examination to see that our model can be used for practical
credit risk assessment.

1 Introduction
In this paper, we propose a new random thinning model in a so-called top-down
framework so as to improve credit risk assessment of some sub-portfolios. Specifically
we extend a model of credit quality vulnerability factor (CQVF) regarded as a stability
measurement of credit quality of each sub-portfolio introduced in Yamanaka et al. [6]
so that CQVF can be specified in terms of some time varying observable factors and
that the thinning process can be regarded as a factor model.

Financial institutions have been required to highly develop their risk management
by regulation. Accordingly, as for credit risk management, they have to comprehend
how the risks are distributed and related among some credit sub-portfolios as well as
quantify the total risk of the whole credit portfolio.

We use an intensity based credit risk model in a so-called top-down approach so
as to investigate the credit risk dependence of credit sub-portfolios. It is said that
the top-down approach has an advantage to allow a relatively simple representation
of credit risk dependence among constituents of a large portfolio.

In general, modeling within the top-down approach has a couple of steps, “top” part
and “down” part. Firstly (“top” part), we specify the intensity model associated with

*1 This research has been supported by JSPS KAKENHI grant numbers JP17K01248 and
JP18K12818.

1



the counting process of target credit events occurred in the universe portfolio, where
we ignore the constituents of the portfolio. Secondly (“down” part), we obtain the
intensity models corresponding to segmented sub-portfolios of the universe portfolio
by allotting the original intensity model to sub-portfolios via random thinning.

As for random thinning, several methods have been proposed in previous works
as follows. Giesecke et al. [1] and Halperin and Tomecek [3] proposed piece-wise
constant thinning model for calculating portfolio constituent firms risk contribution.
In addition to these, the thinning models which references default probabilities based
on stock values are proposed by Kunisch and Uhrig-Homburg [5] and Kaneko and
Nakagawa [4]. Giesecke and Kim [2] and Yamanaka et al. [8] considered the thinning
models for dissecting the portfolio risk into sub-portfolio contributions, which are
specified by the number of portfolio constituents. In those previous works, anyway
the main idea of thinning is that the original whole intensity is proportionally allotted
according the the size of each sub-portfolio.

In order to correct the way of allotting the original whole intensity into sub-
portfolios, Yamanaka et al. [6] introduced a parameter called “credit quality vulner-
ability factor (CQVF).” Yamanaka et al. [6] assumed a time invariant CQVF model
for their empirical analysis and concluded that the CQVF indicates the existence of
some factors for the credit event frequency of each sub-portfolio, which is different
from portfolio size effect.

However, credit risk factors specific to each sub-portfolio can change in time since
business conditions are rapidly changing. In short it is natural to suppose that the
CQVF can vary in time as Yamanaka et al. [6] pointed out. As such, Yamanaka et
al. [7] suggested a simple piece-wise latent factor model in order to capture dynamics
of CQVF values.

In this paper, we propose a new model of time varying CQVF in a different way
from Yamanaka et al. [7]. Specifically we introduce a CQVF model that can be
specified in terms of some time varying observable factors, so the thinning process
can be regarded as a factor model of CQVF.

Then, we show some results of empirical analysis on estimating our new CQVF
model of the credit rating transition events for industrial sector portfolios with the
historical credit rating transitions reported in Japan. Especially, we employ some ex-
planatory variables obtained from sector-based stock indices and examine significance
of such variables in our empirical analysis. In addition, we try a numerical exami-
nation to see if our model is applicable to credit risk assessment. The consequences
imply a positive answer.

This paper is organized as follows. Section 2 briefly reviews a general formulation
of top-down approach and explains a specification of our random thinning model
with CQCF with some observable variables. Section 3 shows some empirical results.
Section 4 concludes.
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2 Top-down approach
In this section, we give a quick review of an intensity based credit risk model in the
top-down approach and provide a random thinning model with a CQVF specified by
time varying observable variables.

2.1 Intensity model in the top-down approach

Let us consider the continuous time [0,∞) and introduce a filtered complete proba-
bility space (Ω, F , P, {Ft}t≥0), where {Ft}t≥0 is a right-continuous and complete
filtration.

Denote by S̄ the set of all debtors, called the universe credit portfolio and let I be an
integer more than one. We suppose that this universe credit portfolio is decomposed
into non-empty sub-portfolios {Si}i=1,··· ,I , in short, we have S1 ∪ · · · ∪ SI = S̄ and
Si ∩ Sj = ∅ (i ̸= j).

Next we introduce a marked point process ({Tn, s(n)}) whose pair consists of the
times when target each credit event happens and the debtor corresponding to the
event.

More specifically, let T = {Tn}n=1,2,··· be a strictly increasing sequence of totally
inaccessible {Ft}-stopping times with 0 < T1 < T2 < · · · . We regard the stopping
times {Tn}n=1,2,··· as the ordered credit event times observed in the whole credit
portfolio S̄. Let s(n) ∈ S̄ be the debtor where the n-th credit event occurs.

We denote byNt =
∑
n≥1

1{Tn≤t} the counting process of credit events observed in the

whole credit portfolio S̄, and by λt the associated intensity process, which is indeed
an {Ft}-progressively measurable non-negative process such that the compensated

process Nt−
∫ t

0
λsds is an {Ft}-local martingale. Often λt is modeled by a stochastic

intensity process of Hawkes process, that is, a counting process with a self-exciting
property. In this study, we do not specify the model of λt since we pay attention to
modeling of random thinning explained later, which can be discussed independently
of the universe-portfolio intensity process λt.

Accordingly, the counting process of credit events in sub-portfolio Si is given by

N i
t =

∑
n≥1

1{Tn≤t, s(n)∈Si}. Then the intensity λi
t associated with the the sub-portfolio

Si is obtained by using the procedure called a random thinning.
Let {Zi

t}i=1,··· ,I be [0, 1]-valued {Ft}-adapted processes called thinning processes

such that
∑I

i=1 Z
i
t = 1, ∀t ≥ 0.

For each i = 1, · · · , I, with the thinning process Zi
t , it follows that the intensity

process λi
t for sub-portfolio Si can be given by

λi
t = Zi

tλ
∗
t . (1)
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2.2 Specification of thinning processes

We introduce our model of random thinning processes {Zi
t}i=1,...,I as in (2) below.

They are specified by the proportion of the sub-portfolio size weighted by positive
{Ft}-adapted processes {θit}i=1,...,I , which Yamanaka et al. [6] intoroduced as“Credit
Quality Vulnerability Factor (CQVF)” .

The CQVF can be interpreted as some factors that affect credit event frequency
in a different way from the portfolio size effect. As θit is larger, the credit event of
sub-portfolio Si is likely to be more frequent, that is the credit quality of Si would be
more vulnerable. On the other hand, as θit is smaller, the credit events in Si is likely
to occur less frequently, that is the credit quality of Si would be less vulnerable.

Zi
t =

θit|Si|∑
i θ

i
t|Si|

for i = 1, . . . , I, (2)

where |Si| denotes the number of elements in Si.
The number of debtors in sub-portfolio can increase due to new debtors’ arrival

or decrease due to complete payment without refinancing and default of debtors.
We assume that Si do not varies, namely our thinning model is formulated by (2)
for simplicity since it does not matter with empirical analysis as we see below*2.
However we can also consider the extended model which admits a time varying case
of the cardinality of sub-portfolio.

In this paper, we specify the CQVF processes {θit}i=1,...,I in terms of some covari-
ates which stand for some observable risk factors of the corresponding sub-portfolio
Si, specifically {Ft}-adapted M -dimensional processes {Y i

m,t}m=1,...,M as follows: for
each i = 1, . . . , I,

θit = exp
(
a1Y

i
1,t + · · ·+ aMY i

M,t + γi
)
, (3)

where {am}m=1,...,M are common coefficients over all the sub-portfollios, and γi is
a parameter viewed as a fixed effect for sub-portfolio Si. We call this CQVF model
as exponential regression CQVF model in this paper. In our empirical analysis, we
estimate not only the model with fixed effect but also the model without fixed effect
(by setting γi = 0).

2.3 Estimation Procedure

As indicated above. we can estimate the parameters in our exponential regression
CQVF model (3) independently of the universe-portfolio intensity process λt.

Denote by Θ = (a1, a2, . . . , aM , γ1, . . . , γI) the model parameters to be estimated
in (3).

*2 In the empirical analysis below, we consider the Japanese large companies with credit rating
given by an agency and they are segmented by industry. We consider only credit rating
transitions and do not consider defaults.
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The data for estimating the parameters Θ is a sample of pairs {(T̃n, s̃(n))} of the

event times and the corresponding names and covariates {Ỹ i
m,t}m=1,...,M observed in

the sample period [0, T ].
We employ a maximum likelihood method for estimating Θ. Since {ZTn

}n=1,2,··· ,Nt

are independent given the event times, the likelihood function is specified by

L(Θ | {(T̃n, s̃(n))}T̃n≤T , {Ỹ
i
m,t}m=1,...,M,0≤t≤T ) =

I∏
i=1

∏
T̃n≤T |s̃(n)∈Si

Zi
T̃n

. (4)

Hence, the log-likelihood function is described as follows:

logL(Θ | {(T̃n, s̃(n))}T̃n≤T , {Ỹ
i
m,t}m=1,...,M,0≤t≤T )

=
I∑

i=1

∑
T̃n≤T |s̃(n)∈Si

log
(
Zi
T̃n

)

=
I∑

i=1

∑
T̃n≤T |s̃(n)∈Si

{
log(|Si|) +

(
a1Ỹ

i
1,t + · · ·+ aM Ỹ i

M,t + γi
)

− log

I∑
i=1

(
|Si| exp

(
a1Ỹ

i
1,t + · · ·+ aM Ỹ i

M,t + γi
))}

. (5)

3 Empirical analysis
In this section, we illustrate some empirical results on our exponential regression
CQVF model and demonstrate the applicability of the model to credit risk assessment.
For the purpose, we classify a set of Japanese firms into 33 sub-portfolios via sector
classification defined by the Tokyo Stock Exchange (TSE) so as to incorporate risk
factors “alpha” and “beta” calculated from the sector stock index announced by TSE.

In addition, we examine momentum and/or reversal effects of rating changes by
introducing dummy variables which indicates if a rating transition occurred during
the last 6 months *3 . At last, we compare the estimated distribution of the number
of credit events with the realized number of credit events for each sub-portfolio, and
examine if our model is useful for practical credit risk assessment.

3.1 Sample data

As sample data for estimation of the exponential regression CQVF model (3), we
employ historical data on credit rating transition of Japanese firms. Especially, we

*3 “Rating transition momentum” means the phenomenon that another downgrades (resp. up-
grades) are likely to occur successively after one downgrade (resp. upgrade) occurrs. On the
other hand, “revesal” means that a downgrade (resp. an upgrade) tends to occur after one
upgrade (resp. dpwngrade) occurs.
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use the historical records on downgrade and upgrade from April 1, 2000 to September
30, 2013 of the Japanese firms, which were announced by Rating and Investment
Information, Inc. (R&I)*4.

We use the samples from April 1, 2000 to March 31, 2010 for parameter estimation
as training data (in-sample), and the samples after March 31, 2010 as test data (out-
of-sample). Thus we implicitly suppose that the whole credit portfolio consists of all
the firms where R&I provided the credit rating each period.

We assume that the whole credit portfolio of the rated firms is classified into 33
sub-portfolios by industry according to “TSE 33 sector classification” shown in table
2 in the appendix A.

As for specification of exponential regression CQVF model (3), we use “alpha”
and “beta” calculated from the data of 33 TOPIX sector indices respectively as the
covariates Y i

1,t and Y i
2,t for sub-portfolio i = 1, . . . , 33 in (3). We tentatively employ

such risk factors derived from the sector stock price indices. Hoewever we consider
that there is some rationality in selecting them since it is highly probable that credit
quality of each industry sector is more or less relevant to the stock market.

The method of calculating the risk factors“alpha”and “beta” is as follows.
First, in order to obtain “alpha” for each sector, we calculate both the annual return

of TOPIX and the corresponding sector index for business days during the in-sample
period. Then we calculate “alpha” Y i

1,t for sub-portfolio i as the time-series of the
difference between the realized annual returns of TOPIX and the sector return:

Y i
1,t = annual rTOPIX

t − annual rit, (6)

where annual r∗t is the realized annual return at time t of TOPIX while annual rit the
realized annual return at time t of i-th sector index*5.

Second, the “beta” Y i
2,t for each sector is obtained by the ratio of sample covariance

over the last one year of daily TOPIX returns to sample covariance over one year
between daily returns of TOPIX and the corresponding sector index, in short.

Y i
2,t =

1
249

∑249
k=0

(
rTOPIX
t−k − 1

250

∑249
ℓ=0 r

TOPIX
t−ℓ

)(
rit−k − 1

250

∑249
ℓ=0 r

i
t−ℓ

)
1

249

∑249
k=0

(
rTOPIX
t−k − 1

250

∑249
ℓ=0 r

TOPIX
t−ℓ

)2 , (8)

where r∗t is the actual daily return at time t of TOPIX while rit the actual daily return
at time t of i-th sector index

*4 Rating and Investment Information, Inc. (R&I) is one of the largest credit rating agencies in
Japan.

*5 Actually we calculate the realized annual return at time t of an index as its 250 business day
return, that is, we obtain annual return of the index denoted by St as

St − St−250business days

St−250business days
, (7)

where St and St−250business days are the closing price of the index at the date t and 250 business
days before date t respectively.
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Also, we add the dummy variable indicating if an underlying event occurred during
the last half year to the two risk factors so as to examine the existence of rating
transition momentum and/or reversal effect. Let Y i

3,t and Y i
4,t be the dummy variables

at time t resepectively for downgrades and upgrades during the last half year.
Hence the four risk factors are prepared as the candidates that may determine the

dynamics of CQVF.

3.2 Estimation Results

We illustrate the estimation results for the exponential regression CQVF model with
“alpha”, “beta”, and the two dummies below.

Table 1 shows the estimation results for selected models in the exponential regres-
sion CQVF model without fixed effects and with ones. These models are selected with
AIC from all nested models with 12 combinations of factors. The values in paren-
theses are the standard errors. The parameter is judged significant if the absolute
value of the estimate is larger than twice of the standard error (meaning about 5%
significance level).

The estimated alpha in Table 1 is significantly negative (resp. positive) for any
case. It indicates that the downgrades (resp. upgrades) is likely to happen more
frequently for the sectors with low (resp. high) alpha. Similary, the results on the
model without fixed effects shows the larger beta the more frequently both downgrades
and upgrades are likely to happen. On the other hand, the beta for the exponential
regression CQVF model with fixed effects is not significant, different from the cases
without fixed effects. As for rating change momentum and/or reversal, the coefficients
of the dummies are not significant for most cases although the estimates imply weak
possibility of momentum effects.

The estimated fixed effect is significant for 14 sectors in downgrades and for 25
sectors in upgrades. Table 3 and Table4 in the appendix B show the estimated fixed
effect per sector for the exponential regression CQVF modell with all candidate risk
factors “alpha”, “beta”, two dummies for downgrades and upgrades during the last
half year and the fixed effect. Such a result seems to indicate that there are some
additional risk factors driving the CQVF other than “alpha”, “beta’ and the dummies.

For a comparison, we also estimate a constant model given by θit ≡ exp
(
ci
)
for a

constant parameter ci. The values of AIC of estimated constant models are 3180.0 for
downgrades and 2716.7 for upgrades. It follows from this result and the results Table
1 that the exponential regression CQVF model is superior, with respect to AIC, to
the constant model for both downgrades and upgrades.

3.3 Distribution of the number of rating transitions obtained from expo-

nential regression CQVF model

In order to see if our exponential regression CQVF model can be useful for credit
risk assessment, we achieve the (conditional) distribution at time T of the number

7



Table. 1: Estimates of the selected exponential regression CQVF model . The values in
parentheses are the standard errors. LL and AIC stand for the value of log
likelihood and Akaike’s Information Criteria respectively.

Down Up
without fixed effect with fixed effect without fixed effect with fixed effect

α −0.689 −0.570 0.680 0.645
(0.263) (0.259) (0.207) (0.207)

β 　 0.347 - 　 0.735 -
(0.154) - (0.178) -

Down - - −0.223 −0.286
- - (0.117) (0.116)

Up −0.206 −0.162 - -
(0.108) (0.106) - -

LL −1598.1 −1553.3 −1353.0 −1318.4
AIC 3202.2 3176.6 2712.0 2706.9

of credit events that occur during some period (T, T + ∆] for some ∆ > 0 in i-th
sub-portfolio, namely P (N i

T+∆ − N i
T ∈ • | FT ), from the estimated CQVF model

with the training data on [0, T ] Then we compare the distribution with the observed
number of downgrades or upgrades contained in the test data.

Remember that we use the samples from April 1, 2000 (t = 0) to March 31, 2010
(t = T ) for estimation and those from January 1st, 2010 to December 30th, 2013
(t = T +∆) for testing.

From a viewpoint of AIC minimization, Table 1 indicates that the optimal expo-
nential regression CQVF model is the model with fixed effect and using “alpha” and
the dummy of upgrade (resp. downgrade) during the last half year as risk factors for
downgrades (resp. upgrades).

The (conditional) distribution P (N i
T+∆−N i

T ∈ • | FT ) for downgrades or upgrades
in i-th sub-portfolio is achieved by Monte Carlo simulation. We try 100,000 random
scenarios generated from the optimal exponential regression CQVF model .

The simulation procedure is as follows:

i). Set the downgrade or upgrade times {T ′
n} such that T < T ′

1 < T ′
2 < · · · ≤ T+∆

in the whole test data.
ii). For each n, calculate {Zi

T ′
n
}Ii=1 with the optimal exponential regression CQVF

model and allocate T ′
n to one sub-portfolio randomly according to the allocation

probability {Zi
T ′
n
}Ii=1. Each scenario, all the events in the test data are ran-

domly allocated to sub-portfolios, regardless of which group the events actually
belong to.

iii). Repeat the previous task 100,000 times and finally obtain the empirical distri-
bution of the number of randomly allocated events for each sub portfolio.

Fig. 1 (resp. Fig. 2) displays the boxplots per sector of the distribution of the
number of downgrades (resp. upgrades), which are obtained via Monte Carlo simu-
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lation mentioned above. Here, we selected the results of some big sectors in terms of
the average size of the sector.
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(c) Electric Appliances
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(d) Transportation Equipment
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(e) Retail Trade
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(f) Banks

Fig. 1: The actual number of downgrades (circles) for sector Chemicals, Machinery, Electric
Appliances, Transportation Equipment, Retail Trade and Banks in our sample data
(from January 1st, 2000 to December 30th, 2009) as well as the boxplot per sector
of the distribution of the number of downgrades during some period obtained via
the simulation. As for the boxplot, the top and the bottom indicate the maximum
and minimum respectively, the upper side and the lower side of each box indicate
the 90th and the 10th percentile respectively, and the band inside does the median.
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(c) Electric Appliances
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(d) Transportation Equipment
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(e) Retail Trade
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(f) Banks

Fig. 2: The actual number of upgrades (circles) for sector Chemicals, Machinery, Electric
Appliances, Transportation Equipment, Retail Trade and Banks in our sample data
(from January 1st, 2000 to December 30th, 2009) as well as the boxplot per sector
of the distribution of the number of upgrades during some period obtained via the
simulation. As for the boxplot, the top and the bottom indicate the maximum and
minimum respectively, the upper side and the lower side of each box indicate the
90th and the 10th percentile respectively, and the band inside does the median.
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From these figures, it follows the annual actual rating changes in most sectors
are located in the range between the 90th and the 10th percentile of the estimated
distribution of the annual event number obtained by simulation on the exponential
regression CQVF model.

Fig. 4 display boxplots per sector of the estimated distributions of downgrades and
upgrades for both the exponential regression CQVF model and the constant CQVF
model as well as the actual number of the corresponding events.

Like the results for the training data, we can see the actual downgrades are located
in the range between the 90th and the 10th percentile of the simulated distribution ob-
tained from both models in most sectors*6. We remark, however, that the downgrades
in “Banks (sec. 28)” are far out of the range of 10% and 90% .

In some cases, we notice that the actual events are out of the range of 10% and
90% for the estimated constant CQVF model while they are in the same range for the
exponential regression CQVF model. Fig. 4 shows the results for other sectors with
observations of such cases. Such observations indicate that the dynamics of CQVF can
be explained to some extent by employing alpha and beta of TOPIX sector indices,
and that the exponential regression CQVF model fits the data a little better than the
constant model. However it is not clear that the exponential regression CQVF model
is significantly superior to the constant model.

4 Concluding remarks
In this paper, we propose a new model of CQVF that can be specified in terms
of exponential regression with some covariates. Then, we execute some empirical
analyses on estimating our new exponential regression CQVF model for credit rating
transitions classified into the industrial sector sub-portfolios with the historical data
reported in Japan. As a result, we see that the “alpha” obtained from sector-based
stock indices and the dummy for momentum effect are significant as explanatory
variables of CQVF.

In addition, we examine how the actual event count is located in the estimated
distribution obtained by simulation for our new CQVF model per industry sector.
Consequently our new model shows a little better fit to the data than the constant
CQVF model. Thus the result implies that our model can improve practical credit
risk assessment.

For a further improvement of CQVF model, we can consider some alternative types
of our CQVF model. For example, we may also consider the model in which the
coefficients differ from sector to sector unlike our presumption of common coefficients
for every sector as seen in (3).

Naturally it is also a future work to find better risk factors other than the ones
used in this study to improve the exponential regression CQVF model. Provided we
can select some significant macro-economic variables as risk factors for CQVF, our
model would be useful for stress testing of credit portfolios.

*6 Some observations are out of the range between the 90th and the 10th percentile of the
distribution obtained from the primitive model.
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(a) Downgrade
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(b) Upgrade

Fig. 3: The actual number of downgrades and upgrades (circles) for sector Chemicals, Ma-
chinery, Electric Appliances, Transportation Equipment, Retail Trade and Banks
in our test data (from January 1st, 2010 to December 30th, 2013) as well as the
boxplot per sector of the distribution of the number of downgrades and upgrades
during some period obtained via the simulation. As for the boxplot, the top and
the bottom indicate the maximum and minimum respectively, the upper side and
the lower side of each box indicate the 90th and the 10th percentile respectively,
and the band inside does the median.
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Other Finance
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Fig. 4: The actual number of downgrades for sector Glass & Ceramics Products, Iron &
Steel and Other Financing Businessand upgrades (circles) for sector Land Trans-
portation and Other Financing Business, in our test data (from January 1st, 2010
to December 30th, 2013) as well as the boxplot per sector of the distribution of
the number of downgrades and upgrades during some period obtained via the sim-
ulation. As for the boxplot, the top and the bottom indicate the maximum and
minimum respectively, the upper side and the lower side of each box indicate the
90th and the 10th percentile respectively, and the band inside does the median.
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Appendix A Tokyo Stock Exchange 33 sector classification

Table. 2: Tokyo Stock Exchange 33 sector classification

Sec No. Sector Name Sec No. Sector Name
1 Fishery, Agriculture & Forestry 18 Precision Instruments
2 Mining 19 Other Products
3 Construction 20 Electric Power& Gas
4 Foods 21 Land Transportation
5 Textiles & Apparels 22 Marine Transportation
6 Pulp & Paper 23 Air Transportation
7 Chemicals 24 Warehousing & Harbor
8 Pharmaceutical 25 Information & Communication
9 Oil & Coal Products 26 Wholesale Trade
10 Rubber Products 27 Retail Trade
11 Glass & Ceramics Products 28 Banks
12 Iron & Steel 29 Securities & Commodity Futures
13 Nonferrous Metals 30 Life Insurance & Non-life insurance
14 Metal Products 31 Other Financing Business
15 Machinery 32 Real Estate
16 Electric Appliances 33 Services
17 Transportation Equipment
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Appendix B Estimates of fixed effect

Table. 3: Estimates of fixed effect. The values in parentheses are the standard errors. The
estimates which are significant under 5% significance level are marked by “∗”.
Also, the actual number of downgrades or upgrades and the average number of
firms in each sector are presented.

Sector No. Down Up
Ave of the

num. of firm

γi Num. of events γi Num. of events

1 1.523 1 −7.171 0 0.3
(1.002) (219.841)

2 0.486 1 1.621 * 3 1.8
(1.001) (0.580)

3 0.345 20 0.485 7 26.8
(0.229) (0.381)

4 −0.056 16 1.010 * 19 32.0
(0.254) (0.235)

5 0.412 9 0.493 3 10.2
(0.337) (0.580)

6 0.538 8 1.132 * 6 9.4
(0.357) (0.411)

7 0.179 27 1.419 * 34 46.5
(0.198) (0.179)

8 −0.506 5 1.090 * 10 15.3
(0.449) (0.320)

9 1.018 * 5 1.653 * 5 3.9
(0.450) (0.450)

10 −0.012 2 0.447 1 3.5
(0.709) (1.001)

11 0.124 4 1.194 * 5 7.4
(0.502) (0.450)

12 0.371 8 2.002 * 15 11.0
(0.357) (0.263)

13 1.118 * 12 1.723 * 8 8.0
(0.292) (0.357)

14 −0.277 3 0.353 2 7.3
(0.579) (0.709)

15 0.499 * 28 1.769 * 31 34.3
(0.195) (0.187)

16 0.734 * 56 1.567 * 41 56.5
(0.142) (0.164)

17 0.635 * 29 1.603 * 30 32.8
(0.191) (0.190)
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Table. 4: Estimates of fixed effect. The values in parentheses are the standard errors. The
estimates which are significant under 5% significance level are marked by “∗”.
Also, the actual number of downgrades or upgrades and the average number of
firms in each sector are presented.

Sector No. Down Up
Ave of the

num. of firm

γi Num. of events γi Num. of events

18 0.417 6 1.606 * 8 8.1
(0.411) (0.357)

19 0.535 * 16 1.040 * 11 18.7
(0.254) (0.306)

20 0.287 13 −1.698 1 18.7
(0.281) (1.002)

21 0.279 20 0.648 * 11 27.8
(0.228) (0.306)

22 0.098 2 1.983 * 7 4.0
(0.709) (0.381)

23 2.432 * 14 1.072 2 2.6
(0.272) (0.709)

24 0.182 4 −14.307 0 6.7
(0.502) (838.861)

25 1.315 * 8 1.616 * 6 5.2
(0.357) (0.412)

26 0.253 18 1.531 * 23 29.1
(0.240) (0.216)

27 0.563 * 35 1.162 * 15 35.4
(0.176) (0.263)

28 0.859 * 54 1.966 * 53 47.5
(0.144) (0.147)

29 1.129 * 13 2.420 * 19 9.7
(0.282) (0.235)

30 0.990 * 12 1.540 * 8 9.1
(0.292) (0.357)

31 0.979 * 27 1.665 * 20 22.2
(0.199) (0.229)

32 1.165 * 16 1.575 * 9 9.8
(0.254) (0.337)

33 −0.455 9 1.137 * 16 28.9
(0.336) (0.255)
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