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Abstract

Counterparty risk remains at issue in over-the-counter derivative transactions after the finan-
cial crisis of 2008. While the margin for a derivative transaction can only be transfered until just
before the counterparty’s default, the exposure of the derivative transaction can vary stochasti-
cally during the margin period of risk (MPoR), that is, the period from the counterparty’s default
to the actual closed-out of the transaction, and so the anticipated positive exposure may not be
recognized, which yields the counterparty risk. Since it is difficult to calculate the initial margin
(IM) according to the regulations, it has been calculated in practice using a simplified method
called “ISDA SIMM?”. In this study, we derive an approximate formula on some indicators of
counterparty risk for a stochastic volatility model and illustrate some numerical analyses for a
call option in the SABR model as an example to examine the effect of discrepancy between reg-
ulations and practice in margin calculation. Our results imply that the IM calculated in practice
may be insufficient as counterparty risk management, especially when the market is volatile.

Keywords: Counterparty risk, Initial margin, Margin period of risk, ISDA SIMM, SABR
model
JEL Classification: C52, G13, G32

1 Introduction

In derivative transactions (contracts to transfer future funds), it is possible to calculate the
present value of the amount to be transferred in the future at each point in time.

Let us assume that you have an OTC derivatives contract with a certain counterparty. The
transaction is usually closed by paying (or receiving) the present value of the derivative. However,
if the counterparty defaults within the contract period, you must pay an amount equivalent to
the counterparty’s present value as contracted when the present value is negative from your side,
but you may not be able to receive the full amount of the present value when it is positive from
your side. The possibility of incurring losses in derivative transactions due to the counterparty’s
default is recognized as counterparty risk.

Counterparty risk has traditionally been considered in the context of financial institutions’
risk management. After the collapse of long-term capital management in 1998 and the 2008
global financial crisis, it became mandatory for standard derivative transactions to be cleared
by a central counterparty (CCP). For centrally cleared trade, various margins are exchanged
according to the CCP’s rules. However, even for over-the-counter (OTC) derivative transactions
not subject to central clearing, reporting requirements on major transactions to trade repositories

*School of Business Administration, Hitotsubashi University Business School / Shinkin Central Bank
fSchool of Business Administration, Hitotsubashi University Business School. Email: hnakagawa@hub.hit-u.ac.jp



and the exchange of margins between the parties involved are mandatory. Consequently, most
transactions between major financial institutions are now subject to margin exchanges, and their
counterparty risks have been significantly reduced.

Generally, derivative transactions are based on the International Swaps and Derivatives As-
sociation(ISDA) Master Agreement. Accordingly, it is common to include an additional clause,
the Credit Support Annex (CSA), in the ISDA Master Agreement for Margining.

Margin requirements include the variation margin (VM), which preserves the counterparty’s
exposure at each point in time, and the initial margin (IM), which preserves the variation in the
exposure from the counterparty’s default to closing out.

As such, it is natural to assume that the required VM equals the value of the derivative
transaction immediately before the counterparty’s default, which is the last date of margin
delivery. However, the required IM cannot be determined at the counterparty’s default time
because the value of derivative transactions can vary stochastically during the margin period
of risk (MPoR), which is the period from the last date of margin delivery to the transaction’s
closed-out timdL.

Naively it seems better to require as large a margin amount as possible. However, increasing
IM, which in principle does not allow reuse of collateral, means paying collateral procurement
costs. In recent years, Green [5] has advocated that funding costs be included in the value
adjustment of derivative transactions as MVA (margin valuation adjustment). Huge margins are
therefore impractical because they increase transaction costs. Hence, the regulation mandates
that 99 % of the variation in positive exposure during the MPoR be preserved by the required
M.

However, because IM calculations in line with the regulations depend on the inputted param-
eters, such as volatility and the valuation model, the required IM is not always consistent among
the parties. This is likely to lead to a practical problem of disagreement regarding the amount to
be transferred among the parties. So, the ISDA(2021) [10] developed the ISDA Standard Initial
Margin Model (SIMM) as an easy-to-use IM calculation model as an industry standard.

The ISDA SIMM is intended to be simply tractable; therefore, it does not elaborate on the
features of complicated valuation models or changes in market conditions. Thus, it is possible
that the IM requirement calculated using the SIMM may be insufficient in preserving 99 % of the
variation in positive exposure during the MPoR, which is required by the regulations. Therefore,
in this study, we examine the effect on counterparty risk management of discrepancy between
regulations and practice in margin calculation. More specifically, our purpose was to formulate
and numerically analyze the discrepancy between the level of counterpart risk reduction during
the MPoR targeted by the margin regulations and the IM requirement based on the ISDA SIMM
used in practice.

First, we set a general model to discuss the margins of an OTC derivative transaction math-
ematically and define potential future exposure (PFE) and expected positive exposure (EPE),
often referred to as counterparty risk indicators. We then introduce the margin conservation
ratio (Mratio) as an original indicator to determine the extent to which the SIMM based IM
meets the regulation requirements.

Then, for a generalized stochastic volatility model which assumes that the value of a derivative
transaction is given by the underlying asset and “pseudo volatility,” we approximately derived
changes in the derivative value over the MPoR to obtain the explicit approximation formulas of
PFE, EPE, and Mratio for the numerical analyses.

Furthermore, we illustrate some numerical analyses for a call option in the SABR model as
an example to see if SIMM based IM in practice is sufficient for counterparty risk management.

! According to the Basel Committee on Banking Supervision (BCBS) (2019) [3], the MPoR is defined as the
period from the last exchange of collateral covering a netting set of transactions with a defaulting
counterparty until the counterparty is closed and the resulting market risk is re-hedged.



2 Counterparty risk and margin regulation

In this section, we introduce a general mathematical model to argue for the counterparty risk
of derivatives trading. First, we introduce PFE and EPE, which are risk indicators for MPoR
commonly used in counterparty risk management. Both are formulated with the difference
between the margin to be posted in the event of the counterparty’s default and the value of the
derivative at the time when the derivative is actually closed out. Next, we focus on the difference
in the calculation method of the IM between regulations and practice, because such a difference
indicates that the IM calculated by a simplified method used in practice may be insufficient in
achieving the regulations’ expected risk reduction.

2.1 General model for counterparty risk measurement

In this study, we first introduce a probability space (€2, F, P); every random variable and process
representing derivatives, counterparty credit risk, and so on shall be defined on this probability
space. We assume that the probability measure P is physical.

We consider an OTC derivative contracted at time 0 with maturity 7 in the continuous
period [0,T]. We also introduce the filtration (F;)¢c[o,7], which corresponds to the information
time-flow available in the market.

We denote by {V(t)} the (F):eo,r1-adapted process that represents the derivative’s market
value dynamics. In this study, we assume that the process {V(¢)} is almost surely continuous. In
short, if the derivative transaction is closed at time ¢, you can receive V (t) from the counterparty
when V (¢) > 0 (you are in a profitable position), whereas you must pay —V () to the counterparty
when V' (t) < 0 (you are in a lossy position).

An important problem is that when V' (¢) > 0 and the counterparty falls into default, it may
not fully receive the expected profit V(¢) and may incur some loss. This possibility of incurring
losses due to counterparty failure is the so-called “counterparty risk.”

Following the 2009 Pittsburgh Summit and the 2008 financial crisis, some regulations on
derivative transactions were introduced to avoid the emergence of counterparty risk. Many
derivatives traded among major financial institutions must now be cleared through the CCP
system. In such cases, the CCP calculates the margin requirement based on its model and
charges the necessary margins to each financial institution. CCP also settles and manages the
marginal requirements.

However, exotic derivative transactions which require complex systems despite relatively low
demand, and options products for which there is no model to evaluate, are commonly accepted
by all market participants.

In the case of OTC derivative transactions between major financial institutions that do not
involve CCPs, margin regulations require the exchange of margins to deal with counterparty risk.
The margin is repaid to the counterparty if no problems occur when the derivative transaction
closes. However, the posted margin can be used to compensate for losses due to counterparty’s
default if one is in a profitable position and the counterparty fails, and cannot fully recover
its exposure at time ¢. This is the basic principle of margin regulation in the trading of OTC
derivatives.

Given that there is no common system, such as CCP for OTC transactions, the method of
exchanging margins is determined for each contract between the parties. Generally, derivative
transactions are executed on the ”ISDA Master Agreement ([9]),” which is the fundamental
agreement established by the ISDA. Accordingly, the Credit Support Annex (CSA) is usually
concluded for margin transfers as an annex to the ISDA Master Agreement.

As described above, it seems that the counterparty risk problem may be solved if the margin
delivery is properly executed. However, in reality, the derivatives are not liquidated immediately
when the counterparty falls into default, but after the MPoR has passed.

Thus, the following question arises: “Will the margin received at the time of the coun-
terparty’s default be able to cover the derivative’s profitable position at the actual closed-out



time?”, that is, when MPoR is given by a constant 6*(> 0f2 If the difference V (t +6*) — M (t) is
positive, the margins are not sufficient; that is, counterparty risk may not be completely avoided.

In general, the required margin is divided into VM and IM. The VM directly preserves the
derivative’s present value, whereas the IM is introduced to cover the variability of exposure
during the MPoR, which is the period between the time of the counterparty’s default and the
transaction’s actual closed-out time.

Given that both VM and IM can vary randomly depending on the derivative’s market value,
they can be modeled by (F;)- predictable stochastic processes { VM(¢)} and {IM(¢)}, respectively.
Then, the total necessary margin denoted by {M ()} can be expressed as M (t) = VM(¢) +IM(?).

As for the VM, the CSA usually stipulates that the required VM amount is always equal to
the value of the derivative; therefore, we suppose VM(t) = V (¥).

Consequently, we have

V(t+06%) — M(t) = V(t+8%) — V(t) + V() — {VM(t) + IM(t)}
= V(t+06%) — V(t) — IM(1).

Andersen et al. [I] mention three kinds of exposure modeling during MPoR:Classical+,
Classical—, and Advanced. Our model corresponds to classical 4+, which is the simplest.

The IM is intended to cover the variation in the derivative value during the MPoR; however,
the required IM cannot be determined because of the variation uncertainty V (¢t + 0*) — V(t) at
the time of the counterparty’s default when the final margin is transferred.

Regarding the problem, the regulations specify the required IM as the (conditional) 99 %
point of V(t 4+ 6*) — V/(¢) so that it can be evaluated at time ¢ of the counterparty’s default.

Therefore, the IM required by the regulations, denoted by IMR°8(¢, §*), is defined as

IMEeS (¢, 5%) = ess.inf{y ER|P ((V(t o) vt >y ]-"t> < 1%} , (1)

where a* := max{a,0} for a € R.

To specifically calculate the required IM using (), it is necessary to identify the conditional
probability distribution of the variation V(¢ + 6*) — V(¢), a specific model that describes the
dynamics of the process {V(¢)}. However, derivative valuation models are selected depending
on the market environment, financial institutions’ management policies, and academic research
progress; the specification of models for calculating IM is not mentioned by the regulations, so
the same model is not necessarily used among financial institutions,

Therefore, because it is necessary to calculate the required IM and transfer it smoothly with-
out referring to the specific model of {V'(¢)}, a simplified IM calculation method was developed
primarily by the ISDA and has become the industry standard, as discussed in the next subsection.

2.2 IM calculation used in practice: ISDA SIMM

Financial institutions usually have their own valuation models for each derivative transaction
and calculate sensitivities, such as delta and vega for risk management. The ISDA proposed a
simplified method to calculate IM using sensitivities calculated by financial institutions and a
common estimate of market volatility. This is a feature of the industry standard IM calculation
method, called the ISDA SIMM. For simplicity, we focus on an interest rate option, such as
swaption, excluding margins due to analysis concentration risks.

Suppose the market value of the derivative is given as a function of time ¢, the value of the
underlying asset or variable is denoted by X, and the volatility of the underlying asset is denoted
by o.

2 As MPoR is undetermined at the time of the counterparty’s default, it seems natural to regard it as a random
variable. However, closed-out derivative transactions are often completed within a few days to two weeks after the
counterparty’s default. Therefore, MPoR §* is treated as a given positive constant in this study for ease of handling.

3 For example, LCH, a British clearing house group, announced that it calculates its IM requirements for the
swap-clearing market using Value at Risk (VaR) or Expected Shortfall, which is derived from historical simulations
of five-day fluctuations over the past 10 years. (See the LCH website [13].)



Then, the ISDA SIMM defines the IM requirement IM©S4 (t) for interest rate derivatives and
credit derivatives as the sum of the Delta, Vega, and Curvature margins (Refer to ISDA [10] for
details)‘m.

IMCSA (t) — IMDelta(t) + IMVega(t) + H\/ICvtr(t)7 (2)
where the three IM terms on the right-hand side are defined as follows: B.

IMDelta(t) — RW - {V(t, X(t) + 1bp, J(t)) — V(t, X(t), U(t))}
ov

~ RW - %(t,X(t),a(t)) - 1bp,

IMVega(t) — VRW - O'(t) . {V(t, )((t)7 U(t) + lbp) - V(t7 X(t), U(t))}

~ VRW - o(t) - g—‘:(t,X(t),a(t)) 1bp,
T i o0 V(. X(0).00) + 1bp) ~ V(0. X(0).0(0)

14Days } o(t) ov

—(t, X (¢ t)) - 1bp.
" Time to maturity 80( X (2), 0(#)) - 1bp

IMCE¥ () = 0.5 - min {1

zO.S-min{l

Note that 1bp stands for 1 basis point, = 0.01%.

Here, by abuse of notation, we regard the derivative value as V() = V (¢, X(t),0(t)) with a
function V (¢, z, o) obtained from a specified valuation model. We also suppose that we calculate
the variations of V (¢, X (t),0(t)) for 1bp changes of the underlying asset X (¢) and the volatility
o(t) as approximations of the Delta Z—V(t,X(t), o(t)) and the Vega Z—V(LX(IS), o(t)).

Furthermore, RW and VRW are powsitive constants called SIMM ccﬁafﬁcients, which are sup-
posed to correspond to the 99 % of the small variations for a small change of the underlying asset
and the volatility, respectively. The ISDA updates the SIMM coefficients annually by estimating
them with the market data for the last three years and for stressed years of increasing volatility,
such as 2008, to keep the values conservativeS.

We note that the MPoR is not explicitly included in the ISDA SIMM formula for calculating
the required IM because the SIMM coefficients are estimated under the assumption that MPoR
is set to 10 days.

2.3 Indicators of counterparty risk: PFE and EPE

We focus on the Positive Exposure (PE) (V(t + 6*) — M(t))" because the excess liquidated
amount after MPoR of the derivative over the margin preserved is at issue. Gregory [7] defines
PFE as an indicator of counterparty risk given the level at which the probability that the positive
risk exposure exceeds the counterparty risk by no more than 1% under a real probability measure.
He also performs the EPE using the expected value of positive risk exposure. As you notice, the
PFE corresponds to the VaR with a 99% confidence level, which is often used as a market risk
measure.

Thus, we specify the PFE and EPE for MPoR 6* at time ¢ as F;-conditional random variables
as follows:

PFE(6) = essinf {y € R | P (V(t+67) = V(5) ~IM@t)" >y | F) <001},  (3)

EPE(t;0*) = EP [(V(t +6%) — V() — M) | 7. (4)

4 For derivatives other than interest rate and credit derivatives, the basic concept of calculating IM requirements
remains the same, although the formulas differ.

5 Delta and Vega are common option risk indicators. As for Curvature, it is not clear why ISDA uses this term,
but a possible explanation is that Curvature is attributed to the second partial derivative of the option value with
respect to the underlying asset, that is, so-called “Gamma.” In the Black-Scholes model, Vega and Gamma are known
to be proportional; therefore, the Curvature Margin may be considered to correct the effect of Gamma on Vega.

6 Such a parameter estimation is often called the “34+1 method.”



It follows that the theoretical PFE for regulation-based IM®°8(¢,6*) given by () becomes
zZ€ero.

However, if we calculate the PE in practice based on the ISDA SIMM, we see that the
practical PFE denoted by PFE“®* does not vanish unless IM®°8 (¢, 5*) < IM©S4(#), as below.

PFE“S4(t; 6%)
. * CSA +
- ess.mf{y ER|P ((V(t 0N = V() — IMOSA )T >y | ]—"t) < 0.01}

+
- (ess.inf{y cR|P ((V(t L&) vt >y J-"t) < 0.01} - IMCSA(t)>
— (IMRe(t, %) — M52 (1)) .

Given that counterparty risk is often used to visualize the impact on a financial institution’s
capital and the value of derivative transactions, it is generally measured in terms of monetary
amounts, such as PFE and EPE. In contrast, this study focuses on the extent to which the IM
requirement in practice meets that of the regulations, which is specified as a conservation ratio
of 99 % of the exposure variation during MPoR. Hence, to determine the extent, we define the
Mratio at time ¢, which is an original indicator in this study, by the F;-conditional probability
that positive exposure in practice equals zero as

Mratio(t; 6*) = P ((V(t +6%) = V() —IMOSA ) =0 ]-"t>
=P (V(t+0%) - V(t) <IMP2(t) | F) . (5)

It follows from the definition of IM®°8(¢; §*) in () that the Mratio is 99% when IM©S4(¢) =
MR8 (¢ 5%).

Thus, the discrepancy between regulations and practices in IM calculations can be a problem
in counterparty risk management in OTC derivative transactions, even with an IM.

In the next section, we present specific formulas for PFE, EPE and Mratio for a general
stochastic volatility model. Specifically, we conduct a numerical analysis of the SABR model
with a European call option.

3 Counterparty risk measurement specified for a stochas-
tic volatility model

In the previous section, we discussed the possibility that the IM requirements calculated using
the ISDA SIMM used in practice may not have reached required regulation levels. In this
section, we first introduce a generalized stochastic volatility model and theoretically derive an
approximate evaluation formula for the PE using Ito’s formula. Based on the PE approximation,
we demonstrate how to calculate PFE, EPE, and Mratio presented in the previous section. As
an illustrative example, we demonstrate how to obtain the PFE and EPE of a payer swaption,
a type of interest rate derivative that can be regarded as a European call option, with a forward
swap rate as the underlying asset under the SABR model (a stochastic volatility model often
used in practice).

3.1 Derivation of approximate counterparty risk indicators

Hereafter, we suppose that the value process {V'(¢)} of a derivative transaction can be expressed
by V(t) = V(t,X(t),0(t)) as a function of time ¢, the underlying asset X (¢) and the volatility
of the underlying asset (or something that plays a similar role) o(¢) to be consistent with the
ISDA SIMM that uses Vega, the sensitivity of V(¢) to volatility.

We assume that the underlying asset process {X(¢)} and pseudo-volatility process {o(t)}
satisfy the following stochastic differential equations (SDEs), called the generalized stochastic
volatility model: We note that o(¢) itself is not the true volatility of the underlying asset, but



in most specific models, it essentially plays a role in driving the volatility; thus, we call it
pseudo-volatility.

AX (1) = pux (1, X (t), 0 (D) dt + ox (t, X (1), 0 (D) dWE(2), (6)
do(t) = pe(t, X (t),0(t))dt + o, (t, X (t), a(t))dWP(t), (7)

o

where px (t,x,0), po(t,z,0),0x(t,z,0) and o,(t,x,0) are “good” functions satisfying some reg-
ularity conditions that guarantee the existence and uniqueness of strong solutions for the above
SDEs, and W¥(¢) and WF(¢) are correlated standard Brownian motions under the physical
measure P with constant correlation p € [—1, 1], that is, dW¥ (#)dWF () = pdt. .
From Ito’s formula, it follows that if the function V(¢,z,0) is a Ct22-function, we have
2
(for simplicity, write 9,V (t) and 92,V (¢) instead of %(t’X(t)7J(t)) and %(t,X(t),a(t))

respectively, and so on)

AV (t) = dV (t, X (1), o (t))
= O,V (t)dt + 8,V (t)dX () + 0,V (t)do(t)

+ SR VOAX)(0) + 502,V (Odlo) (1) + 2,V (Hd(X, o))
=0,V (t)ox(t, X(t),o(t))dW (t) + 0,V (t)os(t, X (t), o (t))dWF (1)

+ {atV(t) + 0.V (O)px (t, X (1), 0(t) + oV () o (t, X (1), 0(1))

4 %ZﬁzV(t)aX(tX(t), o (1)) + %ag(,vg)ag(uxu), o (1))?

+02,V(t)p ox(t, X(t),0(t))oq(t, X (1), U(t))}dt~ (8)

We fix time ¢ for the remainder of this subsection.

Given that MPoR §* can be regarded as a sufficiently short period, from a few days to a
14Days
365Days
apply the discrete approximation of (§) by considering dt = §*. Accordingly, dWx (t) and dW,(t)
can be approximately replaced with v6*Zx and v6*Z,, where Zx and Z, are two standard
normally distributed random variables with correlation p.

Subsequently, the PE based on ISDA SIMM is approximately represented as follows:

maximum of two weeks ( is used in the numerical illustration later), it is possible to

V(t+06") = V() —IMOSA (1) ~ Ax () Zx + Ag(t) Zy + Ac(t), (9)

where we define F;-measurable random variables Ax, A,, and A¢ as
Ax(t) == 0,V (H)ox (t, X (t), 0 () V6" (10)
Ay (t) 1= 0,V (t)o,(t, X (t),0(t) V3" (11)

Ac(t) = {(%V(t)ux(t,X(t), o(t)) + 0V (t) o (t, X (t),0(t))
FOV(E) + 502,V (Hox (1, X(0), 000 + L8,V (Do (1, X (1), o(1))?
+ 02V (t)pox(t, X(t),0(t))os(t, X (t), a(t))}é* — IMA(¢). (12)
Given that Zx and Z, are independent of F; and each follows a standard normal distribution,

the conditional expectation and variance of Ax(¢)Zx + A,(t)Z, + Ac(t) are represented as
follows:

EP [Ax(t)Zx + As(t)Zs + Ac(t) | Fi] = Ac(t),
Var® [Ax (1) Zx + Ao (t) Zs + Ac(t) | Fi] = Ax(t)? + 2pAx (t) Ay (t) + Ay (t)2.



Moreover, letting A, (t) := \/Ax ()% + 2pAx (t) Ay (t) + A, (t)2, we can obtain another standard
normal variable Z independent of F; specified by
Ax(t)ZX + Ag(t)Zg

A.(t)

7 =

Thus, we have
V(t+36) = V(t) = IMPA () = A.(1) Z + Ac(t).

Finally, it follows from ([3) and (@) that PFE“A(¢;6*) and EPE“SA(;6*) can be obtained
as follows:
PFESSA(£;6%) ~ (©71(0.99) A, (1) + Ac(t)) " = (2.33A.(t) + Ac(t) T, (13)
EPECSA(t:6%) ~ BF [(4:()2 + Ao(t) " | 7]
= A, (H)EF | 21 o1 | Fel + Ac(O)EFP |1 o | Fi
(t) { {2>-4cw) | t:| + Ac(t) [ {z>-4cw) | t:|

+o0 5
b g s (1)

Az (t)

A, Ac(t)? A
_ \/2(%) exp (3&%?) + Ac(t)® ( A"é?) , (14)

where 14 is the indicator variable of event A € F and ®(-) is the standard normal distribution
function.
Moreover, the Mratio, defined in (B]), can be calculated as

Mratio(t) ~ P ((Az(t)Z FA()T =0 ]-‘t>

(o) (R) e

3.2 Example: payer swaption with SABR model

For the numerical analysis of counterparty risk indicators in the next section, we set up a
derivative transaction and its valuation model as examples.

As mentioned above, many derivative transactions have become subject to centralized clear-
ing, but exotic derivatives with small trading volumes and some products for which valuation
models are difficult to construct are still traded over the counter. In this study, we will use a
“ payer swaption” (an interest rate derivative that is commonly traded over the counter de-
spite its relatively high trading volume) as an example for numerical analysis from a practical
viewpoint.

This option uses the forward swap rate as the underlying asset and can be exercised only on
the expiration date. When the option is exercised at maturity, a swap transaction in which the
swaption holder pays the fixed rate and receives the floating rate can be initiated (or cleared
by exchanging cash, depending on the contract) at strike rate K. For simplicity, the current
annuity value is assumed to be one. Therefore, if X (¢) represents the forward swap rate at time
t, the option payoff V(T') at maturity T is given by the European call option as follows:

V(T)=(X(T)-K)". (16)

Next, we adopt the SABR model as the valuation model, a type of stochastic volatility
model proposed by Hagan et al.[8]. The SABR model is often used in interest rate derivative
transactions since it considers the volatility skew. In general, the SABR model is formulated as



follows. The underlying forward swap rate {X(¢)} and the pseudo-volatility {o(¢)} follows the
SDEs under a swap measure?, denoted by Q.

dX (t) = o(t) (X (1) dWR(2), (17)
do(t) = vo(t)dWR(t), (18)

where {W)(? (t)} and {WQ(t)} are standard Brownian motions under the measure Q with dW)(? (t)dAWR(t) =
pdt, and the parameters o(0) > 0,8 € [0,1],v > 0 and p € [—1, 1] are constants.

Note that we can view the SABR model as an example of the generalized stochastic volatility
model specified by (@) and (7)) by setting ux(t,z,0) = po(t,r,0) = 0,0x(t,z,0) = ox? and
0,(t,z,0) = vo, though the underlying probability measures are different.

To manage counterparty risk in PFE and so on, it is necessary to transform the dynamics
under the swap measure Q to those under the physical measure P, which will be discussed later.

Hagan et al. [§] derive two types of approximations for pricing European call options using
the SABR model. One is consistent with the case of § = 1 or the Black model (where the forward
rateX (t) is log-normal), and the other is consistent with 8 = 0 or the Bachelier model (where
X(t) is normal). Although negative interest rates have been observed in developed countries
since the beginning of the 2010s, the Black (lognormal) model cannot allow for negative interest
rates. This study uses the approximation pricing formula consistent with the Bachelier (normal)
model. We let oy be pseudo-volatility in terms of Bachelier’s model, with dX (t) = oNdW;? (t).

We denote this by V(t) = V(T'—t, X (t), on(t), K) the price at time t € [0, T] of the European
call option with strike K and maturity 7. Here, we assume that oy (¢) is the implied pseudo-
volatility at time ¢, which is consistent with the Bachelier model where dX (t) = oNdW;? (t).

Following Appendix B.2. in Hagan et al. [§], we can approximate V(T — t, X (¢t),on(t), K)
for 5 € (0,1) as:

V(T =, X(t),on(t), K) = (X(t) — K) @ (d(t)) + on(O)VT = - ¢ (d(t)), (19)

where

y 1-8 _ -8
2t) = 2(X(), 0 (), By, K) = —L 2D LS

o(t) 1-4
x(z,p)=10g< : 1_2Pjtj_p+z>,

o) :==0(X(t),0(t), B, p,v, K)
_182-B)1-B)%0(t)(log 5)? | pro(t) X(1)° —K°  2-3p° ,
DY (X(1)1—F — K1-5)2 1 X()-K Y
on(t) :=on(T —t,X(t),0(t), B, p,v, K)
o)1 -B)(X(t) - K) =)
TOX@ KT xG,) L OWEOh
X(t) - K
on(tWT —t

d(t) = d(T - th(t)aUN(t)aK) -

Using the approximate analytical solution for the option price, we can calculate partial deriva-

ov

tives, such as a—(t) and —(t) to obtain counterparty risk indicators.
x

We suppose that the risk premiums 0x (¢) and 0, (t) are given as (F;)-adapted processes that
satisfy

AWE () = dW2(t) — Ox (t)dt, dWE(t) = dWR(t) — 0, (t)dt.

7 A swap measure, equivalent to the risk-neutral measure, is a pricing measure whose numeraire is an annuity or a
portfolio of zero coupon bonds with different maturities. The forward swap rate process becomes a martingale under
the associated swap measure. (Refer to Jamshidian [12] for details.)



Thus, it follows from the Girsanov-Maruyama theorem that Brownian motions W)(? (t) and W2(¢)
under the swap measure Q are converted into Brownian motions WE (¢) and WF (¢) under the
physical measure P; we can then obtain the dynamics of X (t) and o(t) with W¥ () and WF (¢)
under the measure P.

Given that we have

px(t) = 0x (o (t) (X(X)°,  po(t) = 0. (t)vo(t),

we can obtain the F;-measurable components Ax (t), A, (t), and Ac(t) (given in ([I0), (), and
([@2))) needed to calculate the risk indicators PFE, EPE, and Mratio for MPoR 6 (given in (I3]),
(), together with A, (t) := \/Ax ()2 + 2pAx (t)Ac(t) + A, (1)2).

Ax() = ((B(al0) + VT 10(d(0) 52 0)) o0 X (VG (20)
Aolt) = VT ¢<<>>a§j<t>w<t>@ (1)

{ Aa(t) 0.(t) + (m&m () — on(t) ) o(d(t))

\/(? ot 20T —t

(Lo t)QB + 5OV (O + OV O X () ) o(0?) -5
t) A, (t)

{RW S VR s \ﬁ} (22)

14Days
T—1

where RW and VRW are the SIMM coefficients and SF := 0.5 - min {1,

in subsection

In Section[Alof Appendix A, we demonstrate how to derive the Greeks for the pricing formula
(@) of the European call option under the SABR model.

We can further obtain specific expressions for partial derivatives of o with respect to the
underlying and pseudo-volatility; however, because they are very complicated expressions, the
partial derivatives are numerically computed by taking the central difference.

} is introduced

4 Numerical illustration

In this section, as prepared in the previous subsection, we numerically calculate the counterparty
risk indicators (such as PFE) under some conditions for the payer swaption for the SABR model
to see how different parameters (such as pseudo-volatility) affect the indicators. We also attempt
to determine the source of PFE by decomposing the exposure into three components: Delta,
Vega, and Curvature.

4.1 Assumptions for numerical calculations for counterparty risk indi-
cators

First, we assume that the payer swaption used in the numerical analysis has a strike price of
K = 3.00% and a time to maturity of T — ¢ = 1 (Year); that is, the payoff at maturity is given
by

V(T) = (X(T) — 3.00%)"

For the coefficients of the SABR model, we assume 8 = 0.75 so that we can account for the
situation where the volatility increases as interest rates rise, and thus the forward rate approaches
a log-normal model with 8 = 1. In addition, we suppose v = 0.30 for the volatility of the pseudo-
volatility and p = 0.5 for the correlation between the underlying asset and its pseudo-volatility.
In short, we assume

dX(t) = o(t) X ()" TPdW(t), do(t) = 0.300 (£)dWR(t), dW & (t)dWR(t) = 0.50dt.
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The ISDA SIMM based IM, denoted by IMCSA, depends on SIMM coefficients RW and VRW
published by the ISDA. The SIMM coefficients for the interest rate derivatives in 2021, published
by the ISDA [I0] are shown in Table[Il

The RWs for regular currenciesd generally remains between 50 and 60, except for periods of
less than one year. The VRW is 0.18 for all currencies. In this study, we assume RW= 60 and
VRW= 0.20 for all periods to simplify the calculations.

The MPoR is set to 10 business days.

5 — 10 Business Days 14 Days
o 1 Year ™ 365 Days’

according to BCBS [2].

Finally, in order to calculate the risk indicators such as PFE, it is necessary to determine the
risk premiums 6x (¢) and 6, (t) between the physical measure P and the swap measure Q. In
this example of the call option, we can see that the larger these values are, the higher the PFE
and EPE via the argument in subsection B.Il However, it is difficult to specify and estimate
Ox(t) and 0,(t) although the actual risk premiums seem rather likely to be positive. Taking
these into account, we set both Ox (t) and 6, (t) (equivalently px () and uq(t)) to zerdd so that
we can find the lower limit of the risk indicators in a sense. Hence, the actual risk indicators, if
the risk premiums are likely to positive, are expected to be worse than those with the zero risk
premiums.

Table 1: The SIMM coefficients revised in 2021

type ‘ ccy 2w 1Im 3m 6m lyr 2yr 3yr oSyr 10yr 15yr 20yr 30yr
RW | regular | 114 106 95 74 66 61 56 52 93 o7 60 66
low-vol 15 18 86 11 13 15 18 20 19 19 20 23

VRW All 0.18

The parameters and other factors assumed in the numerical calculations are listed in Tabld2l

Table 2: The parameters and other factors assumed in the numerical calculations

‘ parameter value

Option | K 3%

T—t 1 Year
Model | 3 0.75

v 30%

P 0.5

WXy [ 0 (for seeing the lower limit of risk)
SIMM | RW 60

VRW 0.2
MPoR | §* 14 / 365

4.2 Numerical results of counterparty risk indicators

In the following, we numerically calculate counterparty risk indicators PFE, EPE, and Mratio
based on the ISDA SIMM method.

8 The regular currencies are USD, EUR, GBP, CHF, AUD, NZD, CAD, SEK, NOK, DKK, HKD, KRW, SGD, and
TWD, whereas the only low-vol currency designated is the JPY. Other currencies are classified as high-vol currencies.
9 We do not assume the risk premiums of the model are actually zero here. It seems indeed unreasonable to
assume that the actual risk premium that emerges by measure change from the physical probability measure to the
swap measure are Zero.
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First, for each of the three pseudo-volatility cases of o(t) = 10, 15, and 20%, we compute the
counterparty risk indicators with values of X (¢) ranging from 1% to 7%. The weekly data for the
10-year U.S. interest rate from 1990 to the end of 2023 show that it has ranged between 0.5% and
9.0%, with rate of 1% and 7% corresponding to about the second and the 90th percentile point
of the whole sample, respectively. Although the pseudo-volatility cannot be directly observed,
a naive calculation, assuming volatility to be a constant at each point in time, implies that the
pseudo-volatility can be regarded as roughly between 5% and 30% within the above data period.
Especially around 20% during the 2008 financial crisis and the upper 20% range during the 2020
coronavirus pandemic. Thus, we believe that the ranges of X (¢) and o(t) used for our numerical
experiments are reasonable from a risk management perspective.

The results are presented in Figure[ll We can easily check whether the IM meets regulation
requirements by observing the Mratio in the graphs. Specifically, we can see that in low pseudo-
volatility with o(¢t) =10%, IM“4 s sufficient even for deep in-the-money or high underlying
forward rates. It is particularly noticeable that, especially for the high pseudo-volatility case
of o(t) =20%, the PFE ( red line) increases rapidly, whereas Mratio ( blue line) decreases
rapidly when the underlying forward rate X (t) is in-the-money or greater than the strike price

K = 3.00%.
olt) = 10.0 olt) = 15.0 oltl = 20.0

0.7 —_— 100.0 0.7 — 100.0 0.7 — 100.0

e . ‘a

N .
06 Lo7s5 0.6 ~ La75 0.6 ~, Lo75

~. N,
05 L 35.0 05 N feso 05 N, Los.0
Y
n4{ — PFE Lozs n4{— PFE n4{— PFE Loz5
-=-- EPE -=- EPE -=- EPE
0.3 4 =.= Mratio F90.0 03 { == Mratio 0.3 { =.= Mratio Fo90.0
\
0.2 L 875 0.2 0.2 LB7.5
0.1 L 8s.0 0.1 0.1 les.0
0.0 < g2 5 0.0 00 e 7T 82.5
2 1 B 2 1 B 2 4 B
Xit) X(t) Xit)

Figure 1: The counterparty risk indicators of PFE, EPE, and Mratio based on the ISDA SIMM
method for the values of X (¢) ranging from 1% to 7% for three pseudo volatility values: 10% (left),
15% (middle), and 20% (right), respectively. The scale of PFE and EPE is on the left-hand side,
while that of Mratio is on the right-hand side (displayed in %).

Next, we calculate the counterparty risk indicators with o(¢) values ranging from 5% to 25%
for the out-of-the-money case with X (¢) = 2% and for the in-the-money case with X (t) = 4%
and 6%.

The results are presented in Figure[2l We can see that in the out-of-the money case, I
is sufficient even when the volatility is high; however, as the degree of in-the-money increases,
the decrease in Mratio becomes steeper with an increase in pseudo-volatility. This numerical
illustration assumes px = p, = 0, so PFE and EPE can increase (Mratio can decrease) for
in-the-money trades if ux > 0 or p, > 0.

MCSA

4.3 Factor decomposition of risk

In ISDA SIMM, as shown in (@), the total IM®4 is calculated by adding IMPe*2 TMVe& and
IMEY™ | If it is possible to determine the extent to which the PFE is related to Delta, Vega, and
Curvature factors, this will be useful for counterparty risk management.

Remember that we have

V(t+06") = V(t) = Ax () Zx + A5 (1) Zo + Ac(t),

12



X(t)=20 X{t) =40 X{t)=6.0

0.7 100.0 07 — 100.0 07 — 100.0
“-—.______‘-. '-\“
06 Lo7.5 06 T~ fars 06 ~a Lo75
N
0s Los.0 05 L9s.0 05 \.\ Fos.0
n4{ — PFE Lozs n4{ — PFE Loz5 n4{— PFE Lozs
-=- EPE -=- EPE -=- EPE .
0.3 4 == Mratio F20.0 0.3 4 =-= Mratio F90.0 0.3 =-= Mratio \'-.‘—90.0
02 L 875 02 L 875 02 L8755
0.1 L 85.0 01 L850 01 L850
0.0 82.5 0.0 82.5 [ R 82.5
10 15 20 10 5 0 10 15 0
at) at) oit)

Figure 2: The counterparty risk indicators PFE, EPE, and Mratio are based on the ISDA SIMM
method for o(t) values ranging from 5% to 25%, for three values of the underlying forward rate
X (t) = 2% (left), 4% (middle), and 6% (right), respectively. The scale of PFE and EPE is on the
left-hand side, while that of Mratio is on the right-hand side (displayed in %).

where Zx and Z, are standard normal random variables.

In light of this, it follows from (@) - (I2)) that the exposure during the MPoR over the SIMM
based IM, V(¢ + 6*) — V(t) — IM®SA(#), can be approximately captured by decomposing it into
three factors related to Delta, Vega, and Curvature as seen below.

V(t +6%) — V() — IMCSA(t) ~ LPela(s, §%) ¢ LVera (¢, %) + LEVH (¢, 6%),
where
Lt §%) := 0,V () px (t, X (), 0 (t))6* + Ax (t) Zx — IMPea(¢),
Lvega(t, 0*) =0, V() po(t, X (t),0(t))0" + Ax(t) Z, — IMV"g"‘(t),
LV (t,6%) := Ac(t) = [0V (D pux (8, X (8),0(1)) + 05V (D)o (t, X (1), 0 ()] 6*
+ (PR 1) 4 TV YRR 1))

- {atvos) + 202,V (Hox (8 X(0.00))° + S02,V (B0 (. X(1). 0(1)?
02V (t)pox (1, X (1), 08))oa (b, X (1), () }5* M),

We now discuss 99 % of the future exposure (FE), which can be negative, for each factor
L*(t,6*) in terms of the factorial risk decomposition. However LEV (¢, 6*) does not include any
random variable, so it is considered to contribute as a constant for fixed t.

For that purpose, we denote by 99%—FEDelta(t;(5*) (resp. 99%-FEV¥*(:6%)) 99 % of the
PFE for the factor related to Delta (resp. Vega) given as

99%-FE " (£; 6*) ~ (uX(t,X(t), o(t))6* + 2.330(t) X (t)°V6* — RW ) d.V(t),
09%-FE Y5 (£, 6*) ~ (ug(t,X(t), o (1))8* + 2.330(H)rV/o* — a(t)VRW) 9,V (1),
However, we should remark
PFESA(t; 6%) # 99%-FE P (; 0*) + 99%-FE % (t; 6*) 4+ LV (¢, 6%).

Under the same conditions as in subsection 1], we compute 99 % of FE of each factor for
values of X (t) ranging from 1% to 7% for three pseudo-volatility cases: for the case of a normal
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period with o(t) =10% or 15% and for the shock period with o(t) =20%. Factor decomposition
results are shown in Figure

PFE(olt} = 10.0} PFE(olt) = 15.0} PFE(o(t} = 20.0}
mm Delta mm Delta mm Delta
0.6 | mem \ega 0.6 1 mem Vega 0.6 1 mem Vega
mm  Curveture mm Curveture mm  Curveture
0.4 04 04
0.2 4 0.2 4 0.2 4
0.0 4 0.0 0.0
—0.2 —0.2 4 —0.2 1
-0.4 -0.4 4 -0.4
2 a 5 2 ; 5 2 3 5
H(t) H(t) M)

Figure 3: The 99 % of FE of each factor related to Delta, Vega, and Curvature for X (¢) values
ranging from 1% to 7%, for three pseudo volatility values o(t) =10% (left), 15% (middle), and 20%
(right), respectively.

In addition, we compute 99 % of FE of each factor for the values of o(t) ranging from

5% to 25% for the out-of-the-money case with X (t) = 2% and for the in-the-money case with
X (t) = 4% and 6%. Results are displayed in Figure [l

PFE(X(t) = 2.0} PFE(X(t) = 4.0} PFE(X(t) = 6.0}

mm Delta mm Delta mm Delta
0.6 mm Vega 061 mm Vega 061 mm Vega
mm Curveture mm Curveture mm  Curveture

0.4 4 0.4 4 0.4 4
0.2 0.2 0.2
oo - — 0o 0o
—-0.2 —-0.2 -0.2
-0.4 { -0.4 -0.4
10 15 20 10 15 20 10 15 20
att) att) ait)

Figure 4: The 99 % of FE of each factor related to Delta, Vega, and Curvature for the o(t) values
ranging from 5% to 25% for the out-of-the money case with X (¢) = 2% and for the in-the-money
case with X (t) = 4% and 6%, respectively.

Both figures indicate that the delta-related factor contributes most significantly to the in-
crease in PFE when the pseudo-volatility is relatively high.

In an actual interest rate market environment, a sudden rise in inflation may force the central
bank to reduce quantitative easing (tapering) or sharply raise interest rates. Considering that
volatility and forward rates are likely to increase simultaneously under such fluctuations in the
financial environment, the rapid manifestation of counterparty risk, which is not preserved by
IM in practice, cannot be ruled out; this is implied by our numerical analysis.
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5 Another application of the model to credit valuation ad-
justments

If the counterparty to a derivative transaction cannot be asked to provide margin or collateral,
it is common to calculate the “Credit Valuation Adjustment (CVA)” as “the difference between
the value of the derivative transaction with and without considering the possibility of the counter-
party’s default under the risk neutral probability measure,” and to see the CVA as a counterparty
risk indicator, as mentioned in Green [5] and so forth™d,

In this section, we do not discuss the CVA evaluation issue in earnest, but after reviewing
the equation of CVA for positive exposure (V (t 4 §*) — M(t))" considering the MPoR §* under
some naive assumptions. Subsequently, under a setting similar to that in the previous section,
we perform a simple analysis by numerically computing CVA for the payer swaptions under the
SABR model™.

5.1 CVA considering MPoR

To calculate CVA, we consider the uncertainty of derivative transactions and counterparty’s
defaults in the probability space (2, F ,f’), where the probability measure P is a risk-neutral
probability measure. Here, we consider bilateral CVA under simple assumptions and a close-out
condition with MPoR.

Next, we model the default-free interest rate, the risk-neutral hazard rate (default intensity)
for each of itself and its counterparty, and the recovery rate given counterparty default. Although
it is preferable to model them using stochastic processes to obtain CVA precisely, we assign them
as constants for simplicity because we do not consider credit risk itself in this study. Note that
implicit in this assumption is that the interest rate, default risks of the parties, and derivative
market values are all independent.

We let r be the default-free interest rate, and Ap and Ac be the risk-neutral hazard rates
of yourself (B) and the counterparty (C'), respectively. We regard the hazard rate as satisfying
the following A, (* = B or C) as satisfying P (1, > t) = e~ *+!, where 7 (resp. 7¢) is the user’s
default time (resp. the counterparty).

With a slight modification to the bilateral CVA standard expression shown in subsection 3.3
of Green [5], we find that under the above conditions, the expression for bilateral CVA, denoted
by CVA(¢;*), at time ¢ considering MPoR 6* is given by

CVA(t;6%) = (1 — Re) Ac /T DF(t,u)EP [(V(u %) — M(u)" | ]-‘t} du (23)
T -
— (1- Re) )\c/ DF(t,u)EP [(V(u %) — V(u) — IM(u))™ | ft} du,

where Re is a constant recovery rate, given counterparty default, and DF(¢t,u) (u € [t,T])
denotes the default risk-adjusted discount factor, given by
DEF(t,u) = ="+ =)= Ae)(u=t),

The closed-out amount must be discounted at the default-free interest rate from the closed-out
time, whereas the counterparty’s default is supposed to occur at time wu.

9 In addition to counterparty risk (CVA), costs or benefits associated with own credit risk (DVA), funding (FVA),
margin (MVA), regulatory capital (KVA), and so forth, are now considered in valuation adjustments. Collectively,
these are referred to as XVA, which is important for financial institutions to calculate and manage accurately because

it is often recognized for accounting purposes. See Gregory [7] for the detail of XVA.

11 Although not considered in this paper, it has become common in practice to consider Initial Margin Valuation
Adjustment (IMVA) when IM is taken into account in CVA calculation. See Green and Kenyonz [6] for the detail of

IMVA.
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As we observe, the conditional expectation term in the integrand of (23]) can be transformed
into

EP

—

(V(u+6) = M)* | 7
=EP [P [(V(u+0") = M) | F] | X(8),0(0)]
—EP [EPECSAP (u; %) | X (1), U(t)} 7 (24)

where the EPE given in () is calculated here under the risk-neutral measure P instead of P.
Hence, we can approximately calculate this conditional expectation term as an example of
payer swaption in the SABR model using ([4) and 20)-22]) with 0x (¢t) = 0,(t) =0

5.2 Numerical analysis for CVA

The parameters for CVA’s numerical calculation are assumed to be r = 0.03, A\ = 0.005, \¢ =
0.01, and Rc = 0.4. The integral part is discretized by the time step A = 1/365; thus, we
calculate the CVA at time ¢ with the time to maturity 7'— ¢t = 1 as follows:

Our CVA numerical calculations are performed using the following algorithm based on a
Monte Carlo simulation with 1,000 trials. Given that the objective is not to obtain the exact
CVA value, but to roughly observe the CVA trend for different values of X (¢) and o(t), the
number of trials is limited to 1,000 for computational efficiency.

1. Give the initial values X (t) and o(t) at initial time ¢.

2. For n-th trial (n = 1,2,...,1000), we set X(™(t) = X (t), 0™ (t) = o(t) and then generate
pseudo-random numbers for correlated normal variables Zx and Z,. We then inductively
obtain discretized paths of the underlying forward rate {X (¢ + kA)} and the pseudo
volatility {o(™ (¢ + kA)} (k= 1,2,...,365) with the following formulas:

XM (t+kA) = XD (t+ (k—1)A)

+o™M(t+ (k—1)A) (X(”) (t+ (k — 1)A))B VAR,
oMt +EA) =™ (t+ (k—1)A) +vo™(t + (k — 1)A)WVAP),
(0, =40)

where {(z }e=12,... 365 are a series of pairs of generated pseudo-random numbers
of correlated normal variables (Zx, Z,).

3. Calculate n-the conditional expectation samples in ([24]) given by
EPE™-CSAP (4 L kAL §*) (k=1,2,...,365),

by substituting, at each time t 4+ kA, the randomly generated values X () (t + kEA) and
o™ (t + kA) into the approximate EPE formula (I4) with the components 20) - (22)
obtained in the SABR model.

4. We finally achieve the CVA approximately from the following formula.

365
CVA(t;6*) ~ (1 — 0.40) x 0.01 x — Ze 0.03x 55554 —(0.005-+0.01) X 85

1000
% 1 (n),CSA,P +i 5*
1000 = 365’

The results are presented in Table [Bl It can be seen that CVA is likely to increase as the
underlying forward rate X (¢) or pseudo-volatility o(t) increases. In addition, we suggest that
the magnitude of the increase depends on the level of v. This is because the parameter v affects
X (t) and o(t) over time, thereby affecting exposure throughout the option period.
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Table 3: The CVA calculated by the simulation. The table displays the CVA values computed for
several pairs of initial values of (X (¢),o(t)) when the parameter nu is fixed as 10% and 30%. The
CVA values are displayed in 1076 %.

v o) | X(0) =2% X() =4% X() = 6%
10% | 10% 0.12 0.88 9.24
15% 0.59 20.47 103.98
20% 5.12 85.37 313.79
30% | 10% 0.26 5.38 22.56
15% 4.15 36.87 135.81
20% 19.16 135.81 393.44

6 Concluding remarks

Regulations for OTC derivatives trading, initiated after the G20 Pittsburgh Summit (2009) and
triggered by the financial crisis, have been completed with the full enforcement of the OTC
derivatives trade reporting system (2010), central clearing obligation (2012), electronic trading
platform usage obligation (2015), VM requirements (2017) and IM requirements (2022). Their
implementation has resulted in the significant reduction of counterparty risks among major fi-
nancial institutions. In particular, the impact of defaults by individual financial institutions on
the financial system has been reduced because the majority of derivative transactions are under-
written by CCPs through central clearing. In addition, counterparty risks for OTC derivative
transactions that are not underwritten by CCPs have decreased since the VM and the IM were
mandated by the regulations.

However, the IM, which protects against the positive exposure of derivative transactions dur-
ing the MPoR, can only be transferred immediately before the counterparty’s default. Therefore,
the regulation requires that 99% of PE fluctuations be maintained. On the other hand, in prac-
tice, the IM requirement has been calculated using a simple calculation method based on the
ISDA SIMM. Consequently, there may be a discrepancy between regulation and practice in some
cases, with concerns raised that practical SIMM-based IM may not meet required regulation lev-
els.

In fact, ISDA constantly validates its models through back-testing. In 2023, the SIMM
coefficients were revised on a quarterly basis instead of once a year as usual, taking into account
the rapid fluctuations in the interest rate market. In addition, the frequency of revision of the
SIMM coefficients will be changed to twice a year in principle from 202522,

In this study, we first provide a framework to quantitatively evaluate the discrepancy between
the 99% PE required by the regulation and the simplified method based on the ISDA SIMM
used in practice, with respect to the IM calculation method considering MPoR. Under a general
stochastic volatility model, we then derive the approximate formula for PFE and EPE, which
are common counterparty risk indicators as well as Mratio, which is newly introduced as a
conservation ratio of IM to the variation of derivative transactions’ exposure during the MPoR.

Moreover, we perform numerical analyses of the counterparty risk indicators for payer swap-
tions (European call options) using the SABR model, which is a stochastic volatility model. Tt is
suggested that if the position is in-the-money and volatility increases, SIMM based IM may not
be sufficient to avoid counterparty risk, though it performs well under normal conditions with
low volatility.

In addition, we attempt to decompose the PFE calculated by ISDA SIMM into three factors
related to Delta, Vega, and Curvature. We also show that the prepared framework could be
applied to CVA calculations.

In a real market environment, interest rates and volatility can rise simultaneously due to the

12 Refer to a website of ISDA [I1]
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monetary policy of sharply raising interest rates. In such cases, the counterparty risk becomes
apparent. Even if the counterparty does not default, a CVA may result in accounting losses.
Therefore, this study reaffirms the importance of counterparty risk management, even in fully
margined derivatives transactions.
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A Derivation of Greeks for the price of European call op-
tion price under the SABR model

Here, we discuss how to derive the above Greeks for the pricing formula ([I9) of the European
call option under the SABR model to calculate counterparty risk indicators such as PFE, EPE,
and Mratio.

First we notice

0 000 (1 ag\ o1 apod od
pota) =50 (e ) = oo S = ~doan) G (0
X(t) - K ad

oV oV ov
Then the first-order partial derivatives, “Delta” <8x)’ “Vega” <8> and “Theta” <8t>’

o
can be obtained as follows.

don OJon

8,V (t) = @ (d(t)) + VT — tg (d(t)) 2 D V() = VT — 16 (d(t)) %N (1),
OV (t) =T —t¢ (d(t)) 3;? () — O'N2(\t/)%t)).

Before discussing the second-order partial derivatives, note that
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_ 1 <1_X(t)K8crN(t)>’

on(tVT —t on(t) Ox
od _X(t)—K(?aN 0 -1 _ X(t)—K aO'N
%(t> - m Do (t>aUNUN(t> - UN(t)Q\//JTt do (t)

7 3 7 “ 7 aQV [44 2 aQV 13 7
Thus the second-order partial derivatives “Gamma” [ — |, “Volga , and “Vanna
ox? Ox0o
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0*v
(82)7 are also obtained as follows.
o

2 V()= (1 —

v = (1- KO0 ) o gy XOK o

on(t) Ox on(t)2/T —t 0o
FVT T (1) 275 1),
2 _(X(t) - K)? OJon 2 A%on
02,v(0) = 12— ) (2 0) + VT o dle) G0
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