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Abstract

In this paper, we present a novel structural credit risk model that is based on the Merton model
to address the challenge of assessing default risk for firms with non-market-traded operational
assets. Specifically, we introduce a model where the firm’s average temporal revenue and operating
expenses are represented as time integrals of an increasing function of depreciating operational
assets, with the actual rates of change fluctuating stochastically. Using this setup, we discuss how
to determine the debt face value and corresponding credit spread within this framework, and we
outline a numerical method for these calculations based on the Merton model. Additionally, we
introduce another model in which the uncertainty of the firm’s total profit is assumed to follow
Johnson’s SU distribution, and we suggest the firm’s debt valuation procedure for this alternative
approach. We demonstrate some numerical experimental results for the two models and discuss the
properties of these models in terms of assessing default risk.

Keywords: structural approach, the Merton model, debt valuation, non-market-traded opera-
tional assets, Johnson’s SU distribution.

JEL Classification: C63, G32, G33

1 Introduction

The purpose of this study is to introduce a new structural-approach credit risk model that makes
some improvements to the Merton [6] model, and to examine the issue of assessing the default
risk of liabilities for firms with non-market-traded operational assets using the new model. Our
model’s novelty lies in the consideration of a situation where revenue and operating expenses (and
consequently the profit, which is the difference between the two) depend on the value of operational
assets while also being exposed to uncertainty.

Credit risk refers to the possibility that the borrower (debtor) may fall into default, causing
the lender (creditor) to suffer financial losses due to the inability to receive repayment as agreed
beforehand. For banking business of corporate lending, the assessment of the credit risk of borrowing
firms has long been a crucial issue.

Among various approaches to modeling credit risk, we focus on the structural approach. It can
be said that the structural approach was pioneered by Merton [6]. In Merton’s model, a firm is
assumed to finance with a discounted bond (debt) and equity to purchase the assets, and a default
is defined as the state in which the company becomes insolvent at the time of debt repayment (in
other words, the value of the firm’s assets falls below the face value of its debt at that time). In
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addition, the stochastic dynamics of the firm’s asset value is modeled using a geometric Brownian
motion. Since the payoff of the discounted bond can be viewed as a short position in a European put
option, where the firm’s assets are the underlying asset and the face value of the debt is the strike
price, the value of the discounted bond is calculated using the Black-Scholes-Merton framework,
which had just been established at that time as the risk-neutral option pricing theory. As another
representative example of the structural approach, well-known is the first passage time model, which
defines the default time as the first time the stochastic process representing the firm value (or its
proxy) reaches a threshold level triggering the default. (An early famous study on the first passage
time model is Black and Cox [1].)

Merton model, though simple, can be considered an excellent model that offers various implica-
tions. Moreover, there are quite a few cases where the Merton model is applied to actual credit risk
assessments in practice. However, its strong assumptions are quite far from the realities of most
firms. One such assumption is that all assets are tradable in the market. This assumption enables
the risk-neutral valuation of the firm’s liabilities; however, the only type of firm where all assets
are likely tradable would be an investment fund. Therefore, when the Merton model is applied
to typical operating companies, the assumption that all assets are market-tradable is excessively
strong.

Additionally, in typical businesses, the revenue is generated through products and services
created using operational assets, and the profit is earned after deducting the operating expenses
and so on. However, the Merton model does not explicitly study the cash flows of business activities,
such as revenue or operating expenses. Some models that apply the structural approach using the
earnings as a state variable are studied by Goldstein et al. [5] and Genser [4], but they do not delve
into the perspectives of revenue and operating expenses.

We believe that considering revenue and operating expenses makes the model more complex.
However, recent studies have emerged in which customers’ deposit and withdrawal data of some
banks are analyzed using statistical methods and/or machine learning techniques (e.g. Yamanaka
and Yamamoto [8].) This suggests the possibility that analyzing deposit and withdrawal data could
make it easier to model the stochastic dynamics of revenue and operating expenses.

Thus, while still somewhat simple at this stage, we propose a model in which the revenue and
the operating expenses are dependent on the operational assets, and by considering some simple
uncertainty, we extend the Merton model to clearly show that the change in the firm’s balance
sheet is driven by period profits.

The basic idea behind our modeling is largely inspired by the discussion in Section 1.3 “Non-
tradable assets” of Capiński and Zastawniak [3], so our model has some similarities with theirs,
although our focus and perspective are different form theirs.

2 First model with exponential martingales driven by

two correlated Brownian motions

In this section, we introduce a model that describes a firm’s balance sheet structure, the dynamics
of its revenue and operating expenses, and debt valuation as an extension of the Merton model.

Note that some of the notation in this model references that used in the credit risk textbook by
Capiński and Zastawniak [3].

To establish the foundation, let (Ω,F , (Ft),P) denote a filtered probability space, where P is
the real probability measure.

2.1 Balance sheet

We consider a firm that begins some business at time 0 and liquidate it at a fixed time horizon
T ∈ (0,∞). In addition, we suppose the followings on the firm.
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• The firm requires operating assets valued at V O
0 and non-operating assets (viewed as cash)

valued at V NO
0 at time 0, which are financed through debt and equity. Thus, the total value

of the initial assets is given by V0 := V O
0 + V NO

0 .

• The debt is raised by issuing a discounted bond with face value of F and maturity T , and
the firm can actually borrow an amount of D0 at time 0. The remaining E0 := V0 − D0 is
financed through the equity.

• At time T , the firm liquidates all of its assets, repays its debt, and distributes the remaining
assets to the shareholders. However, there is a possibility that the firm may fall into “default,”
meaning that the liquidated assets may be insufficient to cover the face value of its debt.

We should remark that while the initial debt amount D0 is initially given, the debt face value
F is still unknown at this point. In other words, F is supposed to be a deterministic constant that
will be determined later. Also, unknown is the credit yield of the discounted bond, denoted as kD,
introduced via the relation D0 = Fe−kDT . Hence, our main problem of this paper is to derive an
equation for obtaining the debt face value F through a discussion of debt valuation under a suitable
model, and to numerically achieving F (or the credit yield kD).

Then, we give the following assumptions on the dynamics of the assets over the period [0, T ).

• The operating assets depreciate over time at a constant depreciation rate η > 0 and ultimately
lead to a liquidation value V O

0 e−ηT .

• The non-operating assets increase at the continuous compounded risk-free rate r.

For time t ≤ T , the operating assets V O
t and the non-operating assets V NO

t are supposed to
change deterministically in time and are respectively given by

V O
t = V O

0 e−ηt, V NO
t = V NO

0 ert.

2.2 Revenue, operation expenses, and profit

Next, we consider the dynamics of the revenue and the operating expenses to calculate the profit
which is added to the assets at the time horizon. We denote by St and Ct stochastic processes
that stand for the cumulative revenue and the cumulative operating expenses during the period
[0, t], respectively. So, the firm’s profit during the period [0, T ] is given by ST − CT , the difference
between the revenue and operating expenses during [0, T ]. If the profit ST − CT is positive, it is
added to the assets at time T . On the other hand, if the profit is negative, the assets are reduced
to cover the deficit amount.

We assume that both the expected cumulative revenue (resp. the expected cumulative operating
expenses) are specified by the time-integral of a deterministic function of the instantaneous revenue
(resp. the instantaneous operating expenses) at each point in time. We suppose that the functions of
the instantaneous revenue and the instantaneous operating expenses depend only on the operating
assets. Thus we denote by s(v) and c(v) some positive, increasing functions that represent the
instantaneous revenue and instantaneous operating expenses, respectively1.

It may seem like a strong assumption that s(v) and c(v) are determined solely by the operating
assets at each point in time. However, rigorously estimating the temporal evolution of operating
assets and their relationship with revenue and operating expenses is essential for formulating a
long-term financial plan―an indispensable aspect of business management. Therefore, while other
factors beyond operating assets may indeed exert some influence in practice, the assumption that
operating assets are the primary determinants of revenue and operating expenses remains reasonably
justified.

At the same time, uncertainties may lead to deviations from the long-term financial plan. Thus,
it is natural to assume that actual revenue and operating expenses fluctuate stochastically over

1In the following discussion, it is essential to note that the revenue and the operating expenses expressed as time
integrals are not random.
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time around their respective expected values, which serve as long-term benchmarks for revenue and
operating expenses.

Following the above discussion, we model the cumulative revenue St and cumulative operating
expenses Ct as follows, incorporating uncertainty while ensuring that both are increasing processes.

St =

(
1 + κSe

σSW
S
t − (σS)2

2
t

)∫ t

0
s(V O

u )du =

(
1 + κSe

σSW
S
t − (σS)2

2
t

)∫ t

0
s(V O

0 e−ηu)du,

Ct =

(
1 + κCe

σCWC
t − (σC )2

2
t

)∫ t

0
c(V O

u )du =

(
1 + κCe

σCWC
t − (σC )2

2
t

)∫ t

0
c(V O

0 e−ηu)du,

where κS , κC , σS and σC are positive parameters, and WS
t and WC

t are a couple of (Ft)-standard
Brownian motions with correlation parameter ρ ∈ (−1, 1).

Since the stochastic process eσ•W •
t −

(σ•)2
2

t is known as an exponential martingale, whose expec-
tation is always one, so we have

EP[St] = (1 + κS)

∫ t

0
s(V O

0 e−ηu)du, EP[Ct] = (1 + κC)

∫ t

0
c(V O

0 e−ηu)du.

Therefore, the terminal value of firm’s assets VT is given by

VT = V O
T + V NO

T + (ST − CT )

= V O
0 e−ηT + V NO

0 erT +

(
1 + κSe

σSW
S
T − (σS)2

2
T

)
IS −

(
1 + κCe

σCWC
T − (σC )2

2
T

)
IC , (1)

where we set

IS :=

∫ T

0
s(V O

0 e−ηu)du, IC :=

∫ T

0
c(V O

0 e−ηu)du.

In particular, we note that the expectation of VT is given by

EP[VT ] = V O
0 e−ηT + V NO

0 erT + (1 + κS)IS − (1 + κC)IC . (2)

The integral terms IS and IC included in firm’s assets VT can be calculated analytically de-
pending on the integrands s(v) and c(v), and even if they cannot, they can be accurately evaluated
using numerical integration.

2.3 Debt valuation

Whether the firm is into default or not at time T depends on the firm’s whole asset VT . If VT ≥ F ,
the debt holder can receive the face value F at time T . On the other hand, if 0 ≤ VT < F , or the
asset is not enough to cover the face value of the debt, the firm will default on its debt and the
debt holder can only receive the asset value VT . If VT < 0, the firm cannot pay anything, so the
payoff for the debt holder is zero.

At last, the debt payoff DT at time T is specified by

DT = F · 1{F≤VT } + VT · 1{0≤VT<F}.

Since we assume that the assets are not traded in the market, the so-called risk-neutral valuation
cannot be applied for the debt valuation. Therefore, according to the idea of section 1.3 in Capiński
and Zastawniak [3], we introduce the expected return on the debt µD over the period [0, T ] under
P and assume the following relationship holds:

D0 =
EP[DT ]

1 + µD
.
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In addition, if the market price of risk p on debt is introduced by

p =
µD − (erT − 1)

1
D0

√
VarP(DT )

.

Although we do not discuss the detailed estimation method for the market price of risk p on
debt here, we believe that the most practical approach is to utilize historical data on bond prices
issued by firms with a similar level of credit risk to the underlying firm. Specifically, this involves
computing the mean and variance of such bond returns and estimating p accordingly based on the
above formula.

Then we can achieve the following equation:

D0 = e−rT

(
EP[DT ]− p

√
VarP(DT )

)
= e−rT

(
EP[DT ]− p

√
EP[(DT )2]− (EP[DT ])2

)
. (3)

We can see

EP[DT ] = EP[F · 1{F≤VT } + VT · 1{0≤VT<F}] = F ·P(F ≤ VT ) +EP[VT · 1{0≤VT<F}], (4)

EP[(DT )
2] = EP[(F · 1{F≤VT } + VT · 1{0≤VT<F})

2] = F 2 ·P(F ≤ VT ) +EP[(VT )
2 · 1{0≤VT<F}].

(5)

By substituting (4) and (5) into (3), we obtain the equation satisfied by F , provided the initial
debt amount D0 and all the parameters are given.

Although the solvent probability P(F ≤ VT ), and the expectations EP[VT · 1{0≤VT<F}] and

EP[(VT )
2 ·1{0≤VT<F}] can be numerically obtained via Monte Carlo simulation, they can be reduced

to calculation of some improper integrals with respect to standard normal distribution as is seen
below. Thus we can numerically solve the nonlinear equation for the debt face value F .

Let

Ψ = V O
0 e−ηT + V NO

0 erT + IS − IC .

In the remainder of this section, we pay attention to the expression ofWC
T = ρWS

T +
√
1− ρ2W ′

T ,
where W ′

t is a standard Brownian motion independent of WS
t . Thus the pair (WS

T ,W
C
T ) follows

two dimensional normal distribution with variance T and correlation ρ, the pair (WS
T ,W

C
T ) has the

same distribution as (
√
TZ1,

√
T (ρZ1 +

√
1− ρ2Z2)) where Z1 and Z2 are independent standard

normal variables.

Also, let ϕ(z) =
1√
2π

e−
z2

2 be the standard normal density, and Φ(z) =

∫ z

−∞
ϕ(x)dx be the

standard normal distribution function.

Proposition 1. We have

P(F ≤ VT ) =

∫ ∞

−∞
Φ


log

Ψ + κSIS · eσS

√
Tz1−

(σS)2

2
T − F

κCIC
− σC

√
Tρz1 +

(σC)2

2 T

σC
√
T
√
1− ρ2

ϕ(z1)dz1. (6)

Proof. Since (WS
T ,W

C
T ) has the same distribution as (

√
TZ1,

√
T (ρZ1 +

√
1− ρ2Z2) with some
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independent standard normal variables Z1 and Z2, we have

P(F ≤ VT )

= P

(
F ≤ Ψ+ κSIS · eσSW

S
T − (σS)2

2
T − κCIC · eσCWC

T − (σC )2

2
T

)
= P

(
F ≤ Ψ+ κSIS · eσS

√
TZ1−

(σS)2

2
T − κCIC · eσC

√
T (ρZ1+

√
1−ρ2Z2)−

(σC )2

2
T

)
=

∫ ∞

−∞
P

(
F ≤ Ψ+ κSIS · eσS

√
Tz1−

(σS)2

2
T − κCIC · eσC

√
T (ρz1+

√
1−ρ2Z2)−

(σC )2

2
T | Z1 = z1

)
ϕ(z1)dz1

=

∫ ∞

−∞
P

Z2 ≤
log Ψ+κSIS ·eσS

√
Tz1−

(σS)2

2 T−F
κCIC

− σC
√
Tρz1 +

(σC)2

2 T

σC
√
T
√
1− ρ2

ϕ(z1)dz1

=

∫ ∞

−∞
Φ

 log Ψ+κSIS ·eσS
√
Tz1−

(σS)2

2 T−F
κCIC

− σC
√
Tρz1 +

(σC)2

2 T

σC
√
T
√

1− ρ2

ϕ(z1)dz1.

Here we set for ξ1, ξ2, y ∈ R,

Ξ(z; ξ1, ξ2, y) :=
log Ψ+κSIS ·eσS

√
Tz1+ξ1T−y

κCIC
− σC

√
Tρz1 + ξ2T

σC
√
T
√
1− ρ2

. (7)

Then we can express the solvent probability (6) in the form of

P(F ≤ VT ) =

∫ ∞

−∞
Φ

(
Ξ

(
z1;−

(σS)
2

2
,
(σC)

2

2
, F

))
ϕ(z1)dz1.

In order to achieve the formula for EP[DT ], we need to calculate EP[VT · 1{0≤VT<F}]. Im-
medeiately we can see

EP[VT · 1{0≤VT<F}]

= EP[

(
Ψ+ κSIS · eσSW

S
T − (σS)2

2
T − κCIC · eσCWC

T − (σC )2

2
T

)
· 1{0≤VT<F}]

= Ψ ·P(0 ≤ VT < F ) + κSISE
P[eσSW

S
T − (σS)2

2
T1{0≤VT<F}]− κCICE

P[eσCWC
T − (σC )2

2
T1{0≤VT<F}].

As for the insolvent probability P(0 ≤ VT < F ), it follows from Proposition 1 with (7) that

P(0 ≤ VT < F ) = P(0 ≤ VT )−P(F ≤ VT )

=

∫ ∞

−∞

{
Φ

(
Ξ

(
z1;−

(σS)
2

2
,
(σC)

2

2
, 0

))
− Φ

(
Ξ

(
z1;−

(σS)
2

2
,
(σC)

2

2
, F

))}
ϕ(z1)dz1. (8)

For calculation of the other expectations, we need some preparation. Denote by Ph another
probability measure specified for a pair of (Ft)-adapted processes h(t) = (h1(t), h2(t)) that is defined
via the Radon-Nikodym density

dPh

dP
= exp

(∫ T

0
h1(t)W

S
t − 1

2

∫ T

0
h1(t)

2dt+

∫ T

0
h2(t)W

′
t −

1

2

∫ T

0
h2(t)

2dt

)
.

It follows from Girsanov-Maruyama theorem that

W̃S
t := WS

t −
∫ t

0
h1(u)du, W̃ ′

t := W ′
t −

∫ t

0
h2(u)du

are independent standard Brownian motions under the new measure Ph.
Then, we have the following proposition.
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Proposition 2. We have

EP[eσSW
S
T − (σS)2

2
T1{0≤VT<F}] = P(σS ,0)(0 ≤ VT < F )

=

∫ ∞

−∞

{
Φ

(
Ξ

(
z1;

(σS)
2

2
,
(σC)

2

2
− ρσSσC , 0

))
− Φ

(
Ξ

(
z1;

(σS)
2

2
,
(σC)

2

2
− ρσSσC , F

))}
ϕ(z1)dz1, (9)

EP[eσCWC
T − (σC )2

2
T1{0≤VT<F}] = P(ρσC ,

√
1−ρ2σC)(0 ≤ VT < F )

=

∫ ∞

−∞

{
Φ

(
Ξ

(
z1;−

(σS)
2

2
+ ρσSσC ,−

(σC)
2

2
, 0

))
− Φ

(
Ξ

(
z1;−

(σS)
2

2
+ ρσSσC ,−

(σC)
2

2
, F

))}
ϕ(z1)dz1. (10)

Remark that we use (6), (8), (9), and (10) to obtain the expectation EP[DT ] via (4).

Proof. For the expression (9), we can define the new probability measure P(σS ,0) using the Radon-

Nikodym density
dP(σS ,0)

dP
= eσSW

S
T − (σS)2

2
T . It follows from Girsanov-Maruyama theorem that

W̃S
t = WS

t − σSt and W ′
t are independent standard Brownian motions under the new measure

P(σS ,0).
Thus we have

EP[eσSW
S
T − (σS)2

2
T1{0≤VT<F}] = P(σS ,0)(0 ≤ VT < F )

= P(σS ,0)

(
0 ≤ Ψ+ κSIS · eσS(W̃

S
T +σST )− (σS)2

2
T − κCIC · eσC(ρ(W̃S

T +σST )+
√

1−ρ2W ′
T )− (σC )2

2
T < F

)
= P(σS ,0)

(
0 ≤ Ψ+ κSIS · eσS

√
TZ1+

(σS)2

2
T − κCIC · e

σC

√
T (ρZ1+

√
1−ρ2Z2)+

{
ρσSσC− (σC )2

2

}
T
< F

)

=

∫ ∞

−∞

{
Φ

 log Ψ+κSISe
σS

√
Tz1+

(σS)2

2 T

κCIC
− ρσC

√
Tz1 −

{
ρσSσC − (σC)2

2

}
T

σC
√
T
√
1− ρ2



− Φ

 log Ψ+κSISe
σS

√
Tz1+

(σS)2

2 T−F
κCIC

− ρσC
√
Tz1 −

{
ρσSσC − (σC)2

2

}
T

σC
√
T
√

1− ρ2


}
ϕ(z1)dz1.

For the expression (10), we have

EP[eσCWC
T − (σC )2

2
T1{0≤VT<F}] = EP[eσC(ρWS

T +
√

1−ρ2W ′
T )− (σC )2

2
T1{0≤VT<F}]

= EP[eρσCWS
T − (ρσC )2

2
T+

√
1−ρ2σCW ′

T− (1−ρ2)(σC )2

2
T1{0≤VT<F}].

Similarly, we can define the new probability measure P(ρσC ,
√

1−ρ2σC) using the Radon-Nikodym
density

dP(ρσC ,
√

1−ρ2σC)

dP
= eρσCWS

T − (ρσC )2

2
T+

√
1−ρ2σCW ′

T− (1−ρ2)(σC )2

2
T .

It follows from Girsanov-Maruyama theorem that W̃S
t = WS

t − ρσCt and W̃ ′
t = W ′

t −
√

1− ρ2σCt

are independent standard Brownian motions under the new measure P(ρσC ,
√

1−ρ2σC).
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Therefore

EP[eσCWC
T − (σC )2

2
T1{0≤VT<F}] = P(ρσC ,

√
1−ρ2σC)(0 ≤ VT < F )

= P(ρσC ,
√

1−ρ2σC)

(
0 ≤ Ψ+ κSIS · eσS(W̃

S
T +ρσCT )− (σS)2

2
T

− κCIC · eσC(ρ(W̃S
T +ρσCT )+

√
1−ρ2(W̃ ′

T+
√

1−ρ2σCT )− (σC )2

2
T < F

)

= P(ρσC ,
√

1−ρ2σC)

(
0 ≤ Ψ+ κSIS · eσS(

√
TZ1+ρσCT )− (σS)2

2
T

− κCIC · eσC(ρ(
√
TZ1+ρσCT )+

√
1−ρ2(

√
TZ2+

√
1−ρ2σCT )− (σC )2

2
T < F

)

=

∫ ∞

−∞

{
Φ

 log Ψ+κSISe
σS

√
Tz1+(ρσSσC− (σS)2

2 )T

κCIC
− ρσC

√
Tz1 − (σC)2

2 T

σC
√
T
√
1− ρ2



− Φ

 log Ψ+κSISe
σS

√
Tz1+(ρσSσC− (σS)2

2 )T−F
κCIC

− ρσC
√
Tz1 − (σC)2

2 T

σC
√
T
√
1− ρ2

}ϕ(z1)dz1.

Finally, to achieve the formula for EP[(DT )
2], we need to calculate EP[(VT )

2 · 1{0≤VT<F}]. We
can see

EP[(VT )
2 · 1{0≤VT<F}] = EP[

(
Ψ+ κSIS · eσSW

S
T − (σS)2

2
T − κCIC · eσCWC

T − (σC )2

2
T

)2

1{0≤VT<F}]

= Ψ2P(0 ≤ VT < F )

+ 2Ψ

(
κSISE

P[eσSW
S
T − (σS)2

2
T · 1{0≤VT<F}]− κCICE

P[eσCWC
T − (σC )2

2
T · 1{0≤VT<F}]

)
+ (κSIS)

2EP[e2σSW
S
T −(σS)

2T · 1{0≤VT<F}] + (κCIC)
2EP[e2σCWC

T −(σC)2T · 1{0≤VT<F}]

− 2κSISκCICE
P[eσSW

S
T − (σS)2

2
T eσCWC

T − (σC )2

2
T · 1{0≤VT<F}]

= Ψ2P(0 ≤ VT < F ) + 2Ψ
(
κSISP

(σS ,0)(0 ≤ VT < F )− κCICP
(ρσC ,

√
1−ρ2σC)(0 ≤ VT < F )

)
+ (κSIS)

2EP[e2σSW
S
T −(σS)

2T · 1{0≤VT<F}] + (κCIC)
2EP[e2σCWC

T −(σC)2T · 1{0≤VT<F}]

− 2κSISκCICE
P[eσSW

S
T − (σS)2

2
T eσCWC

T − (σC )2

2
T · 1{0≤VT<F}].

Since we have already obtained P(0 ≤ VT < F ),P(σS ,0)(0 ≤ VT < F ), and

P(ρσC ,
√

1−ρ2σC)(0 ≤ VT < F ), we have to calculate the remaining three expectations.
The results are as follows. The proof is given in Appendix.
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Proposition 3. We have

EP[e2σSW
S
T −(σS)

2T · 1{0≤VT<F}] = e(σS)
2TP(2σS ,0)(0 ≤ VT < F )

= e(σS)
2T

∫ ∞

−∞

{
Φ

(
Ξ

(
z1;

3(σS)
2

2
,
(σC)

2

2
− 2ρσSσC , 0

))
− Φ

(
Ξ

(
z1;

3(σS)
2

2
,
(σC)

2

2
− 2ρσSσC , F

))}
ϕ(z1)dz1,

EP[e2σCWC
T −(σC)2T1{0≤VT<F}] = e(σC)2TP(2ρσC ,2

√
1−ρ2σC)(0 ≤ VT < F )

= e(σC)2T

∫ ∞

−∞

{
Φ

(
Ξ

(
z1;−

(σS)
2

2
+ 2ρσSσC ,−

3(σC)
2

2
, 0

))
− Φ

(
Ξ

(
z1;−

(σS)
2

2
+ 2ρσSσC ,−

3(σC)
2

2
, F

))}
ϕ(z1)dz1,

EP[eσSW
S
T − (σS)2

2
T eσCWC

T − (σC )2

2
T · 1{0≤VT<F}] = eρσSσCTP(σS+ρσC ,

√
1−ρ2σC)(0 ≤ VT < F )

= eρσSσCT

∫ ∞

−∞

{
Φ

(
Ξ

(
z1;

(σS)
2

2
+ ρσSσC ,−

(σS)
2

2
− ρσSσC , 0

))
− Φ

(
Ξ

(
z1;

(σS)
2

2
+ ρσSσC ,−

(σS)
2

2
− ρσSσC , F

))}
ϕ(z1)dz1.

3 Second model with a single noise following Johnson’s

SU distribution

We can notice that the model introduced in the last section is tractable enough to numerically solve
the equation for F . However it seems a little more useful for the debt valuation to calculate P(F ≤
VT ), E

P[VT · 1{0≤VT<F}] and EP[V 2
T · 1{0≤VT<F}] appeared in (4) and (5) with some parametric

distribution.
We modeled revenue and operating expenses separately in the previous section. However, for

the purpose of evaluating debt value, it is sufficient to focus only on the total profit, which is the
difference between them.

From (1) and (2), it follows

VT = V O
0 e−ηT + V NO

0 erT +

(
1 + κSe

σSW
S
T − (σS)2

2
T

)
IS −

(
1 + κCe

σCWC
T − (σC )2

2
T

)
IC

= EP[VT ] + κSISe
σSW

S
T − (σS)2

2
T − κCICe

σCWC
T − (σC )2

2
T − (κSIS − κCIC).

We introduce a parameter σ to specify the variance of VT as follows.

Var(VT ) = EP

[(
κSISe

σSW
S
T − (σS)2

2
T − κCICe

σCWC
T − (σC )2

2
T − (κSIS − κCIC)

)2
]

= (e(σS)
2T − 1)κ2SI

2
S + (e(σC)2T − 1)κ2CI

2
C − 2(eρσSσCT − 1)κSκCISIC

=: σ2T. (11)

From the above, we introduce our second model, in which the terminal asset value is different
from that of the first model and is denoted by ṼT . We suppose that the terminal asset value ṼT is
given as follows.

ṼT = EP[VT ] + σ
√
Tε,

where VT is the terminal asset value of the first model given in (1), and ε is a random variable
following some parametric distribution with zero mean and unit variance.
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Here we assume that the random variable ε follows Johnson’s SU distribution, which has been
often used in quantitative finance like modeling asset returns as an alternative to the normal
distribution because it has four parameters so that the skewness and kurtosis can be adjusted
relatively freely while it is based on the normal distribution.

Specifically, Johnson’s SU distribution is a probability distribution with four parameters γ, δ, λ, ξ
where δ > 0, λ > 0. Its distribution function is given by

FJSU(x) = Φ

(
γ + δ sinh−1

(
x− ξ

λ

))
,

and its density is given by

fJSU(x) =
δ

λ
√
2π

√(
x−ξ
λ

)2
+ 1

exp

{
−1

2

(
γ + δ sinh−1

(
x− ξ

λ

)2
)}

.

It is known that the mean, variance, skewness, and kurtosis of Johnson’s SU distribution are
respectively achieved as follows (for example, see Naguez and Prigent [7].)

Setting ∆ = exp(δ−2) and Γ =
γ

δ
, we have

• Mean: ξ − λ∆
1
2 sinh(Γ ).

• Variance:
λ2

2
(∆− 1) (∆ cosh(2Γ ) + 1).

• Skewness:

− sgn(Γ )

√
∆(∆− 1)

|∆(∆+ 2) sinh(3Γ ) + 3 sinh(Γ )|2

2 (∆ cosh(2Γ ) + 1)3
, (12)

where sgn(·) is the sign function.

• Kurtosis:

∆2(∆4 + 2∆3 + 3∆2 − 3) cosh(4Γ ) + 4∆2(∆+ 2) cosh(2Γ ) + 3(2∆+ 1)

2 (∆ cosh(2Γ ) + 1)2
. (13)

We remark that the skewness and kurtosis depend only on the two parameters γ and δ.
In order to estimate the parameters (γ, δ, λ, ξ) of Johnson’s SU distribution for the random

variable ε, we match the skewness and kurtosis of Johnson’s SU distribution to those of the terminal
asset value VT given in (1), as skewness and kurtosis are invariant to affine transformation.

Specifically, we first match the skewness and kurtosis between the terminal asset value VT of
the first model and Johnson’s SU distribution. To achieve this, we solve the following minimization
problem to obtain the estimates (γ̂, δ̂) that minimize the objective function to zero:

(γ̂, δ̂) = argmin (SkewJSU(γ, δ)− Skew(VT ))
2 + (KurtJSU(γ, δ)−Kurt(VT ))

2 , (14)

where SkewJSU(γ, δ) and KurtJSU(γ, δ) are given in (12) and (12) respectively, and Skew(VT ) and
Kurt(VT ) are given in (17) in Appendix B.

Then, since ε is supposed to have zero mean and unit variance, we can obtain the remaining
two parameters (ξ̂, λ̂) by solving equations

ξ − λ∆̂
1
2 sinh(Γ̂ ) = 0,

λ2

2
(∆̂− 1)

(
∆̂ cosh(2Γ̂ ) + 1

)
= 1,

where ∆̂ = exp(δ̂−2) and Γ̂ =
γ̂

δ̂
.

10



We remark that we need to calculate EP[DT ] and EP[(DT )
2] under the second model, more

specifically, P(F ≤ ṼT ), E
P[ṼT · 1{0≤ṼT<F}] and EP[Ṽ 2

T · 1{0≤ṼT<F}] to obtain the equation for F

in (3).
Under our second model, we remark that

F ≤ EP[VT ] + σ
√
Tε ⇐⇒ θ1 ≤ ε, 0 ≤ EP[VT ] + σ

√
Tε < F ⇐⇒ θ2 ≤ ε < θ1,

where VT is given in (1), and we set

θ1 =
F −EP[VT ]

σ
√
T

, θ2 =
−EP[VT ]

σ
√
T

.

At last, we have

P(F ≤ ṼT ) = 1−P(ε < θ1) = 1− F̂JSU(θ1),

EP[ṼT · 1{0≤ṼT<F}] = EP[VT ]P (θ2 ≤ ε < θ1) + σ
√
TEP[ε · 1{θ2≤ε<θ1}]

= EP[VT ]
(
F̂JSU(θ1)− F̂JSU(θ2)

)
+ σ

√
T

∫ θ1

θ2

x · f̂JSU(x)dx,

where F̂JSU(x) and f̂JSU(x) are respectively Johnson’s SU distribution function and its density
function with the estimated parameters (γ̂, δ̂, ξ̂, λ̂).

Similarly, for EP[Ṽ 2
T · 1{0≤ṼT<F}], we have

EP[Ṽ 2
T · 1{0≤VT<F}]

= EP
[
(EP[VT ] + σ

√
Tε)2 · 1{0≤EP[VT ]+σ

√
Tε<F}

]
= EP[VT ]

2
(
F̂JSU(θ1)− F̂JSU(θ2)

)
− 2EP[VT ]σ

√
T

∫ θ1

θ2

x · f̂JSU(x)dx+ σ2T

∫ θ1

θ2

x2 · f̂JSU(x)dx,

where VT is given in (1).

4 Numerical illustration

This section presents some numerical illustration on the debt valuation for our first and second
model. Specifically we numerically solve the nonlinear equation (3) to obtain the debt face value F
and the corresponding credit spread kD−r, where kD is the credit yield of the zero coupon debt given
by the relation D0 = Fe−kDT . For the purpose, we specify the positive increasing functions s(v)
and c(v) for the expected instantaneous revenue and expected instantaneous operating expenses.

In general, it is natural to assume that s(v) is concave. This is because, even if an increase in
operating assets leads to higher production, the corresponding rise in product prices is likely to be
limited due to oversupply, eventually it can cause the growth in sales to slow down. On the other
hand, the instantaneous operating expenses c(v) should be modeled as a convex function of oper-
ating assets. This is because, while improved productivity through economies of scale can reduce
costs, incorporating a penalty for carbon emissions―reflecting climate change risks―suggests that
excessive production may lead to disproportionately higher costs.

For our numerical illustration, we assume s(v) = aS+bS log(v) and c(v) = aC+bCV
O
u +b̃C(V

O
u )2,

where σS , aS , bS , σC , aC , bC and b̃C are positive parameters2. We note that the specification of the
logarithmic function for revenue and the quadratic function for operating expenses is inspired by
the production function and the cost function related to carbon emissions in Bourgey et al. [2].

2The numerical example shown below satisfies the anti-logarithm condition V O
0 e−ηT > 1.

11



Under the specification of s(v) = aS + bS log(v) and c(v) = aC + bCV
O
u + b̃C(V

O
u )2, we have

IS =

∫ t

0
{aS + bS log V O

u }du = (aS + bS log V O
0 )t− ηbS

2
t2,

IC =

∫ t

0
{aC + bCV

O
u + b̃C(V

O
u )2}du = aCt+ bCV

O
0

1− e−ηt

η
+ b̃C(V

O
0 )2

1− e−2ηt

2η
.

To illustrate a numerical example, we assume the following conditions regarding the initial
balance sheet of a firm. The firm initially consists solely of 800 million in equity, then raises an
additional 500 million by issuing a discount bond with maturity T = 5 years and face value F . In
short, we consider a firm with total assets amounting to 1.3 billion (V0 = 1, 300), funded by 800
million in equity (E0 = 800) and 500 million in debt (D0 = 500). In determining these values, we
ensure that the ratios of total assets, debt, and equity are reasonably close to those observed in
actual corporate balance sheets. Specifically, we approximate the ratio observed in Japanese manu-
facturing firms, where debt comprises approximately 40% of the total assets. Similarly, the ratio of
non-operating assets to total assets is supposed to be set at approximately 40%, corresponding to
the current assets’ ratio to total assets in Japanese manufacturing firms. Thus we set V NO

0 = 570
and V O

0 = 730.
We also assume the risk-free interest rate r = 0.01 and the operating-asset depreciation rate

η = 0.03.
Next, the parameter values for the logarithmic function for revenue and the quadratic function

for operating expenses as introduced above are also set with reference to the income statements
of Japanese manufacturing firms, in consideration of the ratios of revenue, profit, and expenses.
Specifically, the parameter values of the functions s(v) and c(v) for instantaneous revenue and
operational expenses are chosen so that the annual revenue level is around 80% of the total assets,
and expenses are approximately 90% of the annual revenue, so we finally set these functions as

s(v) = 126 log(v), c(v) = 73 + V O
u + 0.0001(V O

u )2. (15)

Third, we set the parameters for uncertainty of revenue and expenses of the firm as follows:
κS = κC = 0.25, σS = 0.1, σC = 0.2, and ρ = 0.2.

Lastly we set the market price of debt risk p = 0.02.
Table 1 summarizes the basic setting values of the model parameters other than those contained

in the functions s(v) and c(v).

Table 1: The basic setting values of the model parameters other than those contained in the functions s(v) and c(v).

T D0 E0 V NO
0 V O

0 r η κS κC σS σC ρ p
5 500 800 570 730 0.01 0.03 0.25 0.25 0.1 0.2 0.2 0.02

These parameters are set arbitrarily for the numerical experiments, but we believe that they
are not particularly unnatural3.

4.1 Illustrations of the first model

Under these parameters, Table 2 presents the results for the first model with the parameters given
in Table 1 with the functions s(v) and c(v) supposed in (15), where solve the nonlinear equation (3)
to determine the debt face value F and the corresponding credit spread kD as the market price of
debt risk p varies from 0.01 to 0.1. For comparison, we include results obtained using the numerical
integration method discussed in Section 2, as well as those derived from a Monte Carlo simulation
with one million runs.

3Indeed, the total asset amount, revenue, and operational expenses are determined with reference to past financial
statements of DENSO CORPORATION.
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We observe that both the debt face value and the corresponding credit spread get larger as the
market price of debt risk p increases. Moreover, we can see that the credit spreads derived range
from 0.6% to 1.0% and they are consistent with the actual credit spreads (for 5-year bonds) ranging
from 0.29% to 1.25% for AAA to BBB-rated corporate bonds as of November 1, 2024.

Table 2: The debt face value F of for the first model obtained by solving the equation (3) and the corresponding credit
spread kD as the market price of debt risk p varied from 0.01 to 0.1. The top two rows represent the results obtained via
numerical integration, while the bottom two rows shows the results obtained through Monte Carlo simulation.

p 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
N. I. F 542.46 543.32 544.17 545.03 545.90 546.77 547.64 548.51 549.39 550.27

kD 0.630% 0.662% 0.693% 0.725% 0.756% 0.788% 0.820% 0.852% 0.884% 0.916%
M. C. F 542.67 543.53 544.40 545.27 545.14 546.02 547.90 548.78 549.57 550.56

kD 0.637% 0.670% 0.701% 0.733% 0.765% 0.797% 0.830% 0.862% 0.894% 0.926%

Next, we fix the the market price of debt risk p = 0.02 to obtain the debt face value F
and the corresponding credit spread kD as the correlation parameter ρ varies from −1 to 1.

Figure 1 shows the relation between the correlation ρ and the debt face value F (left
panel) and the corresponding credit spread kD (right panel) for each pair of the parameters
(σS, σC) = (0.1, 0.1), (0.2, 0.1), (0.1, 0.2), (0.2, 0.2).

As we can see, the higher the correlation ρ, the lower both the debt face value F and
the corresponding credit spread kD. Additionally, the credit spread tends to be higher as
the firm’s profit becomes more volatile; in other words, as the parameters (σS, σC) increase.
Furthermore, the uncertainty of operating expenses, σC , has a greater impact on the level of
the credit spread than the uncertainty of revenue, σS. When σC > σS, the spread remains
positive even as the correlation approaches one, whereas in other cases, the spread converges
to zero as ρ approaches one.
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Figure 1: The relation between the correlation ρ and the debt face value F (left panel) and the corre-
sponding credit spread kD (right panel) for each pair (σS, σC) = (0.1, 0.1), (0.2, 0.1), (0.1, 0.2), (0.2, 0.2).
The results obtained via numerical integration.

Then Figure 2 shows the term structure of credit spread kD for each correlation parameter
ρ = −0.2, 0, 0.2, 0.5.

The credit spread term structure curve resembles that of the classical Merton model, in
that we observe the spread initially rising sharply with the length of the term-to-maturity,
but then gradually beginning to decrease at a certain point.
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Figure 2: The term structure of credit spread up to maturity of 20 years for each correlation ρ =
−0.2, 0, 0.2,−0.5. The results obtained via numerical integration.
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4.2 Illustrations of the second model

As for the second model with Johnson’s SU distribution, we need to estimate the four
parameters (γ, δ, η, ξ). Under the above parameters, the theoretical skewness and kurtosis
of the terminal total asset value VT are respectively −1.12836 and 6.26984. Solving the
minimization problem for matching the third and fourth moments given in (14) implies
γ̂ = 1.44495 and δ̂ = 2.01810, and then we have

η̂ =

√√√√ 2

(∆̂− 1)
(
∆̂ cosh(2Γ̂ ) + 1

) = 1.37000, ξ̂ = η̂∆̂
1
2 sinh(Γ̂ ) = 1.20626,

where ∆̂ = exp(δ̂−2) and Γ̂ =
γ̂

δ̂
.

Indeed, with the estimated parameters (γ̂, δ̂), both the theoretical skewness and kurtosis
of Johnson’s SU distribution coincide with those of the terminal total asset value VT .

Table 3 displays the the debt face value F and the corresponding credit spread kD as the
market price of debt risk p varies from 0.01 to 0.1 under the second model with Johnson’s
SU distribution and the above estimated parameters (γ̂, δ̂, η̂, ξ̂). In addition, Figure 3 shows
the term structure of credit spread kD for each correlation parameter ρ = −0.2, 0, 0.2, 0.5.

We remark that the second model with Johnson’s SU distribution gives the higher face
value and credit spread in comparison with the result of the first model as seen in Table 2
and Figure 2.

These consequences imply that it is hard to naively see that the distribution of the
terminal total asset value VT can be approximated with the Johnson’s SU distribution even
if the first four moments can be matched4. In reality, the second model is assumed to be used
independently of the first model, and the parameters are estimated separately from actual
data of revenue and operating expenses. So we believe that the second model is useful in
terms of conservative credit risk assessment.

Table 3: The debt face value F of for the second model with Johnson’s SU distribution and the above estimated
parameters (γ̂, δ̂, η̂, ξ̂) obtained by solving the equation (3) and the corresponding credit spread kD as the market price of
debt risk p varied from 0.01 to 0.1.

p 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

F 548.41 553.88 559.44 565.10 570.84 576.70 582.64 588.70 594.85 601.12
kD 0.848% 1.047% 1.247% 1.448% 1.650% 1.854% 2.059% 2.266% 2.474% 2.684%

Remark 4. If we suppose that, under the specified functions s(v) and c(v) as above, the
firm aims to maximize the expected profit during the period [0, T ], we can obtain the initial
amount of such optimal operating assets before considering how to finance the assets. Denote
by V O∗

0 the initial amount of operating assets maximizing EP[ST − CT ].
If b̃C > 0, then the optimal V O∗

0 satisfies the following first order condition

dEP[ST − CT ]

dV O
0

= (1 + κS)
bST

V O
0

− (1 + κC)

{
bC

1− e−ηT

η
− b̃CV

O
0

1− e−2ηT

η

}
= 0,

4The estimated Johnson’s SU distribution implies a fatter tail on the negative side compared to the empirical distri-
bution generated from random samples of VT obtained through Monte Carlo simulation.
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Figure 3: The term structure of credit spread derived by the second model with Johnson’s SU
distribution and the above estimated parameters, up to maturity of 20 years for each correlation
ρ = −0.2, 0, 0.2,−0.5.

so the positive solution is given by

V O∗
0 =

−bC(1− e−ηT ) +

√
{bC(1− e−ηT )}2 + 4 · 1 + κS

1 + κC

· b̃CbSηT (1− e−2ηT )

2b̃C(1− e−2ηT )
.

If b̃C = 0, we have V O∗
0 =

1 + κS

1 + κC

· bSηT

bC(1− e−ηT )
.

For the parameters given in Table reftable:parameters with the functions s(v) and c(v)
supposed in (15), the optimal initial amount of operating assets becomes 132.4232, smaller
than 570, which we assume as V O

0 .
Naturally, given the complexity of real-world constraints, the result of this optimization

alone is not sufficient to determine the optimal level of operational assets. However, un-
derstanding the optimal level of operational assets is useful for determining the conditions
for investing in discount bonds. For example, it can be helpful when banks provide financial
consulting to borrowing firms.

5 Concluding remarks

In this paper, we consider a firm that begins its business by raising funds through equity
and discount bonds at the initial time point. We introduce the model in which the firm’s
average temporal revenue and operating expenses are formalized as integrals of an increasing
function of depreciating operational assets. In addition, we assume that the actual rates of
change in revenue and operating expenses fluctuate stochastically according to exponential
martingales driven by correlated Brownian motions. Consequently, the terminal asset value
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of the firm, which includes the total profits up to the bond’s maturity, is also subject to
uncertainty. Based on this setup, we discuss the appropriate face value of the discount bond
and the corresponding credit spread above the risk-free rate, and we can calculate these
values numerically under the real probability measure within the Merton model framework.

The results obtained do not significantly differ from those in the classical Merton model,
which assumes the firm’s asset value follows a one-dimensional geometric Brownian motion.
However, introducing a model that captures the uncertainty in revenue and operating ex-
penses―financial flow elements―through two correlated Brownian motions offers promising
potential for developing credit risk assessment models using Point of Sale (POS) data or
bank transaction data in the future.

As the second model, we also introduce an approach that assumes the uncertainty in
the firm’s total profit follows Johnson’s SU distribution. We estimate the parameters of
Johnson’s SU distribution to match the mean, variance, skewness, and kurtosis of the first
model, and then calculate the appropriate face value and credit spread for the discount bond
under this second model. The results indicate a tendency to estimate higher credit risk than
the first model. In practice, it is possible to apply the second model based on Johnson’s SU
distribution independently of the first model. Thus, this approach could be a viable option
for conservative credit risk management.

In the future, we aim to explore practical modeling of revenue and operating expenses
consistent with actual transaction data, as well as extensions such as debt valuation under
incomplete information.
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A Proof of Proposition 3

Similar to the proof of Proposition 2, we can apply equivalent probability measure change
and Girsanov-Maruyama theorem to each calculation.

First, we have

EP[e2σSW
S
T −(σS)

2T · 1{0≤VT<F}] = e(σS)
2TEP[e2σSW

S
T − (2σS)2

2
T · 1{0≤VT<F}]

= e(σS)
2TP(2σS ,0)(0 ≤ VT < F )

= e(σS)
2TP(2σS ,0)

(
0 ≤ Ψ+ κSIS · eσS(W̃

S
T +2σST )− (σS)2

2
T − κCIC · eσC(ρ(W̃S

T +2σST )+
√

1−ρ2W ′
T )− (σC )2

2
T < F

)
= e(σS)

2TP(2σS ,0)

(
0 ≤ Ψ+ κSIS · eσS

√
TZ1+

3(σS)2

2
T − κCIC · e

σC

√
T (ρZ1+

√
1−ρ2Z2)+

{
2ρσSσC− (σC )2

2

}
T
< F

)

= e(σS)
2T

∫ ∞

−∞

{
Φ

 log Ψ+κSISe
σS

√
Tz1+

3(σS)2

2 T

κCIC
− ρσC

√
Tz1 −

{
2ρσSσC − (σC)2

2

}
T

σC

√
T
√
1− ρ2



− Φ

 log Ψ+κSISe
σS

√
Tz1+

3(σS)2

2 T−F
κCIC

− ρσC

√
Tz1 −

{
2ρσSσC − (σC)2

2

}
T

σC

√
T
√

1− ρ2


}
ϕ(z1)dz1.

Next,

EP[e2σCWC
T −(σC)2T1{0≤VT<F}] = EP[e2σC(ρWS

T +
√

1−ρ2W ′
T )−(σC)2T1{0≤VT<F}]

= e(σC)2TEP[e2ρσCWS
T − (2ρσC )2

2
T+2

√
1−ρ2σCW ′

T− (1−ρ2)(2σC )2

2
T1{0≤VT<F}]

= e(σC)2TP(2ρσC ,2
√

1−ρ2σC)(0 ≤ VT < F )

= e(σC)2TP(2ρσC ,2
√

1−ρ2σC)

(
0 ≤ Ψ+ κSIS · eσS(W̃

S
T +2ρσCT )− (σS)2

2
T

− κCIC · eσC(ρ(W̃S
T +2ρσCT )+

√
1−ρ2(W̃ ′

T+2
√

1−ρ2σCT )− (σC )2

2
T < F

)

= e(σC)2TP(2ρσC ,2
√

1−ρ2σC)

(
0 ≤ Ψ+ κSIS · eσS

√
TZ1+(2ρσSσC− (σS)2

2
)T

− κCIC · eσC

√
T (ρZ1+

√
1−ρ2Z2)+

3(σC )2

2
T < F

)

= e(σC)2T

∫ ∞

−∞

{
Φ

 log Ψ+κSISe
σS

√
Tz1+(2ρσSσC− (σS)2

2 )T

κCIC
− ρσC

√
Tz1 − 3(σC)2

2
T

σC

√
T
√

1− ρ2


− Φ

 log Ψ+κSISe
σS

√
Tz1+(2ρσSσC− (σS)2

2 )T−F
κCIC

− ρσC

√
Tz1 − 3(σC)2

2
T

σC

√
T
√

1− ρ2

}ϕ(z1)dz1.
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Finally,

EP[eσSW
S
T − (σS)2

2
T eσCWC

T − (σC )2

2
T · 1{0≤VT<F}]

= EP[eσSW
S
T − (σS)2

2
T eσC(ρWS

T +
√

1−ρ2W ′
T )− (σC )2

2
T · 1{0≤VT<F}]

= eρσSσCTEP[e(σS+ρσC)WS
T − (σS+ρσC )2

2
T+

√
1−ρ2σCW ′

T− (1−ρ2)(σC )2

2
T · 1{0≤VT<F}]

= eρσSσCTP(σS+ρσC ,
√

1−ρ2σC)(0 ≤ VT < F )

= eρσSσCTP(σS+ρσC ,
√

1−ρ2σC)

(
0 ≤ Ψ+ κSIS · eσS(W̃

S
T +(σS+ρσC)T )− (σS)2

2
T

− κCIC · eσC(ρ(W̃S
T +(σS+ρσC)T )+

√
1−ρ2(W̃ ′

T+
√

1−ρ2σCT )− (σC )2

2
T < F

)

= eρσSσCTP(σS+ρσC ,
√

1−ρ2σC)

(
0 ≤ Ψ+ κSIS · e

σS

√
TZ1+

{
(σS)2

2
+ρσSσC

}
T

− κCIC · e
σC

√
T (ρZ1+

√
1−ρ2Z2)+

{
(σC )2

2
+ρσSσC

}
T
≤ F

)

= eρσSσCT

∫ ∞

−∞

{
Φ

 log Ψ+κSISe
σS

√
Tz1+(

(σS)2

2 +ρσSσC )T

κCIC
− ρσC

√
Tz1 −

{
(σC)2

2
+ ρσSσC

}
T

σC

√
T
√

1− ρ2



− Φ

 log Ψ+κSISe
σS

√
Tz1+(

(σS)2

2 +ρσSσC )T−F
κCIC

− ρσC

√
Tz1 −

{
(σC)2

2
+ ρσSσC

}
T

σC

√
T
√

1− ρ2


}
ϕ(z1)dz1.

B Skewness and kurtosis of VT

We remark that

VT − EP[VT ] = κSISe
σSW

S
T − (σS)2

2
T − κCICe

σCWC
T − (σC )2

2
T − (κSIS − κCIC).

Thus the third and fourth centered moments of VT are respectively obtained as follows.
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We have

EP[(VT − EP[VT ])
3]

= (κSIS)
3
{
e3(σS)

2T − 3e(σS)
2T + 2

}
− (κCIC)

3
{
e3(σC)2T − 3e(σC)2T + 2

}
− (κSIS)

2κCIC

{
3e{(σS)

2+2ρσSσC}T − 3e(σS)
2T − 6eρσSσCT + 6

}
+ κSIS(κCIC)

2
{
3e{(σC)2+2ρσSσC}T − 3e(σC)2T − 6eρσSσCT + 6

}
,

EP[(VT − EP[VT ])
4] (16)

= (κSIS)
4
{
e6(σS)

2T − 4e3(σS)
2T + 6e(σC)2T − 3

}
− (κCIC)

4
{
e6(σC)2T − 4e3(σC)2T + 6e(σS)

2T − 3
}

+ (κSIS)
3κCIC

{
−4e{3(σS)

2+3ρσSσC}T + 4e3(σS)
2T + 12e{(σS)

2+2ρσSσC}T − 12e(σS)
2T − 12eρσSσCT + 12

}
+ κSIS(κCIC)

3
{
−4e{3(σC)2+3ρσSσC}T + 4e3(σC)2T + 12e{(σC)2+2ρσSσC}T − 12e(σC)2T − 12eρσSσCT + 12

}
+ (κSIS)

2(κCIC)
2

{
6e{(σS)

2+(σC)2+4ρσSσC}T − 12e{(σS)
2+2ρσSσC}T − 12e{(σC)2+2ρσSσC}T

+ 6e(σS)
2T + 6e(σC)2T + 24eρσSσCT − 18

}
.

At last we obtain the skewness and kurtosis of VT respectively by

Skew(VT ) =
EP[(VT − EP[VT ])

3]

(σ2T )
3
2

, Kurt(VT ) =
EP[(VT − EP[VT ])

4]

(σ2T )2
, (17)

where σ2T , the variance of VT , is given in (11).
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