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Generally, counterparty risk (CPR) in Over-the-Counter (OTC) derivatives has been
significantly mitigated by margin regulations. Specifically, Initial Margin (IM) is
expected to cover the increment of the exposure during the period from a counterparty
default to the actual liquidation. Since margins are delivered only up to the default
time, this incremental exposure must be treated as a random variable.

Therefore to calculate IM amount now many financial institutions use ISDA
Standard Initial Margin Model (ISDA SIMM) as a unified simplified calculation method.

However, it is generally known that a default of a large financial institution, which
is defined as a ”Systemically Important Counterparty (SIC)” by Pykhtin and Sokol
(2013), impacts financial markets and this impact increases the CPR exposure.

ISDA SIMM attempts to incorporate such events in simplified methods called the
”1+3 standard”. This method is conservative, but it does not accurately model the
impacts.

This study investigates whether IM calculated by ISDA SIMM adequately covers
the CPR exposure under the impact of the SIC default.

We model the impact as a jump in risk factors of derivatives within a generalized
stochastic volatility model and theoretically derive approximate formulas for some
CPR indicators, such as Mratio and PFE. Finally, we conduct numerical experiments

∗The views and opinions expressed in this paper are those of the author and do not necessarily
reflect those of the organization he belongs to.
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across several jump scenarios, using a European swaption under the SABR model as a
case study.

The results suggest that, depending on the transaction type and the nature of the
jump, IM may not satisfy the regulatory requirements under the impact.

1 Introduction

Counterparty risk (CPR) in Over-the-Counter (OTC) derivatives is the credit risk
that arises when a counterparty defaults while a derivative value is positive, the value
cannot be realized.

The mandate of the Central Clearing and the Margin Regulations has significantly
reduced CPR globally after the financial crisis (2008). The central clearing reduced
the amount of OTC derivatives and margin regulations mitigate exposure in OTC
derivatives by requiring Variation Margin (VM) and Initial Margin (IM).

In margin regulations the CPR exposure is the value of derivatives at the liquidation
time. VM is required to cover the exposure at the default time and IM is required
to cover the increments of the value during the Margin Period of Risk (MPoR) from
default to liquidation. Since margins are delivered only until the default, at the default
time, the increment is not predictable and must be treated as a random variable. For
this reason, we need to calculate IM as a stochastic problem at the last date of margin
delivery.

To calculate the IM amount we need the model of value process and the estimation
of their parameters. Although the regulations require IM to cover 99% of this incre-
ment, the regulations do not prescribe a specific calculation method. Therefore, the
International Swaps and Derivatives Association (ISDA) developed ISDA Standard
Initial Margin Model (ISDA SIMM) as a unified simplified calculation model.

The regulations were adopted in 2016. However, Bank of England (2023) has
recommended further refinement of MPoR risk management due to the large losses
associated with the default of Archegos Capital Management (ACM, 2021). 1 In
response, International Swaps and Derivatives Association (ISDA) (2023) has increased
the frequency of updating the coefficients used in ISDA SIMM.

In such a discussion, Kitani and Nakagawa (2024) mention that IM calculated by
ISDA SIMM covers 99% of the increment in normal conditions when financial markets
are not stressed, but it may not satisfy the regulatory requirements when volatility rises.

It is generally known that the default of large financial institutions impacts the
financial markets. Taking the default of Lehman Brothers (LB, 2008) as an example
Pykhtin and Sokol (2013) define a ”Systemically Important Counterparty (SIC)” as a
counterparty whose default would impact financial markets and point out that this
impact may increase the CPR exposure.

Additionally, we can observe the actual default cases after LB. For instance the
default of small financial institutions like Silicon Valley Bank (SVB, 2023) and Signature
Bank (SB, 2023) impacted financial markets. Conversely, the SIC default such as ACM

1Bartholomew (2022) mentions that since ACM which was not subject to the regulations did not deliver
IM calculated by ISDA SIMM the recommendation is not on point. She also refers, however, that if ACM
had delivered IM calculated by ISDA SIMM the exposure would not have been covered by IM.
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(2021) did not significantly impact the financial markets as the participants remained
calm.

These examples show that it is difficult to predict the impact before the credit
event, and the impact is probabilistic.

The ISDA SIMM indirectly attempts to incorporate the impact by the conservative
calculation method called the ”1+3 standard”. However, the method does not model
the uncertainty of the impacts.

This study examines whether IM calculated by ISDA SIMM adequately covers the
CPR exposure or not under the impact of the counterparty default.

First, we review the actual impacts in some financial institutions default cases. Next,
we model the impact as a jump in risk factors within a generalized stochastic volatility
model and theoretically derive approximate formulas for some CPR indicators. Finally,
we conduct numerical experiments under several jump scenarios, using a European
swaption under the SABR model as an example.

The results suggest that, depending on the transaction type and the nature of the
jump, IM may not satisfy the regulatory requirements under the impact.

2 Modeling the impact on Financial Markets due to
the default of a counterparty

In this section, we review cases of the SICs defaults in recent years and its impact on
financial markets. Then, we define a mathematical model for the general CPR exposure
and introduce the impact as a jump in risk factors.

2.1 Default of SICs and the impact on financial markets

In 2008, following the default of several SICs, Summit of Financial Market and the
World Economy (G20) (2009) decided to implement several regulations to reduce the
CPR. Then, central clearing of standard derivatives and the delivery of VM and IM in
non-cleared derivatives were mandated.

In particular, the default of LB significantly impacted financial markets, and it has
become clear that transactions with SICs involve not only individual credit risk but
also systemic risk.

Pykhtin and Sokol (2013) define SIC and this impact may increase the CPR
exposure through the jump in risk factors of derivatives. 2

In fact, the default of Long Term Capital Management (LTCM, 1998) and LB
impacted financial markets, as shown in Fig. 1, with a decline in the interest rate and
a spike in their implied volatility.

However, in recent years, we can observe the similar default cases.
For instance, the default of ACM, which is a large fund and according to Bouveret

and Haferkor (2022) its default inflicted substantial losses upon many G-SIBs, did not
impact the financial markets, as shown in Fig. 2. On the other hand, the default of
SVB and SB, which are non-GSIBs and only regional banks in the U.S., impacted

2Pykhtin and Sokol (2013) introduce this concept as being slightly broader than G-SIBs.
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Fig. 1: Financial markets at the default time of LB (Left) and LTCM (Right).
The vertical black line indicates the default date.

the financial markets with a decline in the interest rate and a spike in their implied
volatility, as shown in Fig. 3

These examples demonstrate that the impact is probabilistic and motivate our
modeling of SIC default as a probabilistic jump in risk factors.

Fig. 2: Financial markets at the default
time of ACM.
The vertical black line indicates the
default date.

Fig. 3: Financial markets at the default
time of SVB and SB.
The vertical black line indicates the
default date.

In the next section, we define a general mathematical model and the CPR exposure.

2.2 Counterparty risk and Initial Margin

In this study, we introduce a probability space (Ω,F ,P) assuming that the probability
measure P is physical and denote the value process of derivatives with maturity T
in the continuous period [0, T ] as V and the SIC default time as the stopping time τ .
Furthermore, we assume that V can be calculated using the underlying asset price X
and its volatility σ, and that the filtration (Ft)t∈[0,T ] provides information generated
by all random variables excluding the impact of the counterparty default.

V (t) = V (t,X(t), σ(t))
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In general, V should incorporate counterparty credit risk. However, in this study,
since V is used as the CPR exposure at the SIC default time, we model V excluding
credit risk such as Credit Valuation Adjustment (CVA).

In derivatives, CPR arises in derivatives as the credit risk that if counterparty
defaults while the value of the derivatives is positive (V > 0), we cannot receive the
value.

Here, if the counterparty defaults at time t, the value of the derivative continues to
change stochastically until the liquidation at time t+ δ∗. We denote this period as δ∗

(the Margin Period of Risk, MPoR). To mitigate this risk, regulations require OTC
derivatives to deliver two types of margin, VM and IM.

In this study, if the counterparty defaults at time t, the margin that should be
calculated and delivered at time t is treated as being processed at time t− .

Therefore, the CPR exposure is expressed as the Positive Exposure (PE) defined
as the value after liquidation minus the pre-default value and IM.

In this study since we calculate the CPR at default time, PE is calculated under
the condition of τ = t.

PE(t) = (V (τ + δ∗)−VM(τ−)− IM(τ−))
+
∣∣∣
τ=t

. (1)

For the sake of simplicity, unless otherwise specified, the following discussion will
be based on the condition τ = t, and such specifications will be omitted.

VM directly covers the value V at the counterparty default time, and can be
expressed as,

VM(t−) = V (t−) = lim
s→t

V (s).

After the default the credit exposure V changes stochastically until the liquidation.
Although we need to cover V (t+ δ∗), VM is delivered until the time t. To cover the
increment of the value V from default to liquidation, the regulations require IM. IM
covers the increment of exposure in MPoR.

V (t+ δ∗)−VM(t−) = V (t+ δ∗)− V (t−)

= V (t+ δ∗)− V (t) + (V (t)− V (t−)) ,

But, we need to calculate and deliver IM at time t− so, V (t+ δ∗) is not predictable
at the default time t−. The regulations require IM to cover 99% of this stochastic
increment.

IMReg(t−) = ess.inf
{
y ∈ R

∣∣∣ P(V (τ + δ∗)− V (τ−) ≤ y
∣∣∣ Fτ , τ = t

)
≤ 1%

}
.

To calculate IM amount as required by regulations, we need the model of value
process and the estimation of their parameters. However, since they depend on the
academic research progress and the management policies of financial institutions,
regulations avoid to specify a concrete calculation method. Therefore International
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Swaps and Derivatives Association (ISDA) (2024) developed ISDA SIMM as a unified
simplified calculation method.

In this method IM is calculated using the sensitivity calculated by each financial
institution and the SIMM coefficients (RW and VRW, corresponding to the volatility
of each risk factor) estimated from historical data published by ISDA. The outline of
the calculation formula is as follows. 3

IM(t) = IMDelta(t) + IMVega(t) + IMCurvature(t),

where,

IMDelta(t) = RW · Vx(t,X(t), σ(t)) · 1bp,
IMVega(t) = VRW · σ(t) · Vσ(t,X(t), σ(t)) · 1bp,

IMCurvature(t) = min

{
1,

14Days

Time to maturity

}
· σ(t) · Vσ(t,X(t), σ(t)) · 1bp.

ISDA SIMM was developed in response to the financial crisis, ISDA SIMM attempts
to incorporate the impact indirectly. ISDA SIMM adopts the conservative method,
called 1+3 standard, to estimate SIMM coefficients corresponding to the volatility of
the risk factors. These coefficients are estimated by historical data that consists of one
stress year 4 plus three non-stress years. Thus, IM is conservatively calibrated upward
assuming a certain jump. However, it does not accurately model the uncertainty of the
impact. 5

2.3 Impact on financial markets due to the SIC default

In this section, we model the financial market and impact of a certain SIC default.
First, we adopt that the processes X and σ for t ̸= τ are governed by a generalized

stochastic volatility model.

dX(t) = µX(t,X(t), σ(t))dt+ σX(t,X(t), σ(t))dWX(t),

dσ(t) = µσ(t,X(t), σ(t))dt+ σσ(t,X(t), σ(t))dWσ(t).

Here, µX , µσ, σX , σσ are the drift and volatilities for the underlying asset and its
volatility, respectively, and WX ,Wσ are assumed to be standard Brownian motions
under a physical probability measure P with correlation ρ ∈ [−1, 1].

In this study, similar to the prior research and ISDA SIMM, we introduce the
impact of the SIC default as a jump in the risk factors that constitute the value of
derivative price. We denote the jump in X and σ as a random variable J = (JX , Jσ).

3We focus on the general counterparty risk. Therefore we disregard IM related to Base Correlation specific
to credit risk and related to concentration risk.

4The data is selected to maximize volatility among all historical data. At the time of writing, data
including the default of LB may be used.

5In addition, ISDA SIMM requires financial institutions to conduct a 1+3 back test. This involves
conducting a back test using historical data on the current position. Here too, historical data that includes
the most recent three years plus one year of shock periods4 is used to intentionally increase volatility.
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We assume that the filtration F and J are independent.

X(τ) = X(τ−) + JX , σ(τ) = σ(τ−) + Jσ.

Then, we can decompose the equation (1) into the jump due to the default and the
change in value following the jump.

PE(t) =
(
(V (τ + δ∗)− V (τ)− IM(τ−)) + (V (τ)− V (τ−))

)+ ∣∣∣
τ=t

. (2)

From Ito’s formula, it follows that if the function V is a C1,2,2-function, we can
express the value process of V as,

dV (t) = dV (t,X(t), σ(t))

= Vt(t)dt+ Vx(t)dX(t) + Vσ(t)dσ(t) +
1

2
Vxx(t)d⟨X⟩(t) + 1

2
Vσσ(t)d⟨σ⟩(t) + Vxσ(t)d⟨Xσ⟩(t)

= Vx(t)σX(t,X(t), σ(t))dWX(t) + Vσ(t)σσ(t,X(t), σ(t))dWσ(t)

+

[
Vt(t) + Vx(t)µX(t,X(t), σ(t)) +

1

2
Vxx(t)σ

2
X(t,X(t), σ(t))

+ Vσ(t)µσ(t,X(t), σ(t)) +
1

2
Vσσ(t)σ

2
σ(t,X(t), σ(t))

+ ρVxσ(t)σX(t,X(t), σ(t))σσ(t,X(t), σ(t))

]
dt. (3)

Given that MPoR δ∗ is a sufficiently short period 6 , we can apply a discrete approxi-
mation to equation (3) using random variables ZX and Zσ that follow standard normal
distribution with correlation ρ ∈ [−1, 1].

WX(t+ δ∗)−WX(t) ≃ AD(t)ZX , Wσ(t+ δ∗)−Wσ(t) ≃ AV (t)Zσ,

Then the first term of equation (2) can be expressed as follows.

V (t+ δ∗)−V (t) ≃ AD(t)ZX +AV (t)Zσ +Aδ(t),

AD(t) = AD(t−, J) = Vx(t−, J)σX(t−, J)
√
δ∗,

AV (t) = AV (t−, J) = Vσ(t−, J)σσ(t−, J)
√
δ∗,

Aδ(t) = Aδ(t−, J)

=
(
Vt(t−, J) + Vx(t−, J)µX(t−, J) +

1

2
Vxx(t−, J)σ2

X(t−, J)

+ Vσ(t−, J)µσ(t−, J) +
1

2
Vσσ(t−, J)σ2

σ(t−, J)

610 business days is used in risk management according to Basel Committee on Banking Supervision
(BCBS) (2016). In the numerical experiments conducted later, we use 14 days (δ∗ = 14Days/365Days).
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+ ρVxσ(t−, J)σX(t−, J)σσ(t−, J)
)
δ∗.

We label the jump in value due to the SIC default, the second term of equation
(2), as,

AJ(t) = AJ(t−, J) = V (t)− V (t−) = V (t−, J)− V (t−),

If we set AC(t) = Aδ(t)− IM(t−), equation (2) becomes,

PE(t) = (AD(t)ZX +AV (t)Zσ +AC(t) +AJ(t))
+
. (4)

Therefore, we can see that PE is calculated by the partial derivatives of V .
In the next section, we will define CPR indicators using PE and derive their

approximate formulas.

3 Analytical Approach to CPR for SICs

In this section, we introduce the general CPR indicators and derive the approximate
formulas under a jump in risk factors. Furthermore, to analyze the risk in greater detail,
we decompose PFE, one of the indicators, into Factor PFE of Delta, Vega, Curvature
and Jump components.

3.1 CPR Indicators and Approximate formulas

We focus on Mratio, PFE, and EPE as representative CPR indicators.
Kitani and Nakagawa (2024) define Margin Conservation Ratio (Mratio) as the

probability that PE equals zero.

Mratio(t) = P (PE(t) = 0|Ft−) . (5)

where Φ is the cumulative distribution function of the standard normal distribution, and
we also define ϕ as its probability density function, which will be used in later sections.

Mratio serves to verify whether regulatory requirements are satisfied or not. Regula-
tions require IM to cover 99 % of the loss, so if Mratio is 99 % or higher, the regulatory
requirements are satisfied. Conversely, if Mratio falls below 99 %, the regulatory
requirements are not satisfied. We then quantify the amount of risk.

Gregory (2020) defines Potential Future Exposure (PFE) as the 99th percentile
of losses and Expected Positive Exposure (EPE) as the expectation of PE. PFE is
conceptually similar to Value at Risk (VaR).

PFE(t) = ess.inf
{
y ∈ R

∣∣ P (PE(t) ≥ y | Ft−) ≤ 0.01
}
,

EPE(t) = E [PE(t) | Ft−] . (6)

PFE and EPE are calculated in monetary terms. In this study we measure the
amount of the loss by PFE, which is highly compatible with VaR, is used in risk
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management. Although EPE is not employed in our numerical experiments, it is widely
used in CVA calculations. In the numerical experiments conducted later, we first
examine whether IM satisfied regulatory requirements or not by checking Mratio. If
Mratio is below 99%, we check PFE to measure the amount of the loss.

In the case of No-Jump, Kitani and Nakagawa (2024) simplify PE employing the
random variable Z that follows a standard normal distribution.

PE(t) ≃ AZ(t)Z +AM (t), (7)

AZ(t) =
√

A2
D(t) + 2ρAD(t)AV (t) +A2

V (t),

AM (t) = AC(t) +AJ(t),

Z =
AD(t)ZX +AV (t)Zσ

AZ(t)
.

Then, since AZ and AM are Ft-measurable functions, we can derive the approximate
formulas for the CPR indicators as follows.

Mratio(t) ≃ Φ

(
−AM (t)

AZ(t)

∣∣∣∣ Ft−

)
,

PFE(t) ≃ ess.inf
{
y ∈ R

∣∣ P((AZ(t)Z +AM (t))
+ ≥ y

∣∣∣ Ft−

)
≤ 0.01

}
,

EPE(t) ≃ E
[
(AZ(t)Z +AM (t))

+
∣∣∣ Ft−

]
.

Next, we consider the jump J = (JX , Jσ). Ideally, the jump distribution should
be defined as a parametric function. However, since there are few examples of SICs
defaults, it is difficult to estimate the parameters. In reality, stress scenarios under a
certain assumption are more appropriate. Therefore, in this study, we assume J as a
random variable with discrete probability distribution.

n = 1, 2 · · ·N, jn = (jn,X , jn,σ) , pn = P (J = jn) .

If we set An,Z(t) = AZ(t−, jn), An,M (t) = AM (t−, jn), An,Z and An,M are Ft−-
measurable functions. Since F and J are independent, applying Kitani and Nakagawa
(2024) equations (5) and (6) are equivalent to,

Mratio(t) =
N∑

n=1

Φ

(
−An,M (t)

An,Z(t)

)
pn(t),

EPE(t) =
N∑

n=1

An,Z(t)√
2π

e
−

A2
n,M (t)

2A2
n,Z

(t) +An,M (t)Φ

(
An,M (t)

An,Z(t)

) pn(t),
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For PFE, let Mratio′(t, y) = P
(
(AZ(t)Z −AM (t)− y)

+
= 0

∣∣∣ Ft−

)
, then,

PFE(t) = ess.inf
{
y ∈ R

∣∣ P((An,Z(t)Z +AM (t−))
+ ≥ y

∣∣∣ Ft−

)
≤ 0.01

}
,

= ess.inf
{
y ∈ R

∣∣ 1−Mratio′(t, y) ≤ 0.01
}
,

= ess.inf
{
y ∈ R

∣∣ Mratio′(t, y) ≥ 0.99
}
.

Therefore, PFE can be evaluated numerically. 7

Thus the CPR indicators can be computed once J and the partial derivatives of V
are specified.

3.2 Factor decomposition of exposure

Furthermore, to analyze the CPR we decompose PFE into four factors: Delta (D),
Vega (V), and Curvature (C), which are the basic factors for calculating IM in ISDA
SIMM, and Jump (J).

First, PE derived in equation (4) can be decomposed into four factor PFEs.

PE(t) = (PED(t−) + PEV (t−) + PEC(t−) + PEJ(t−))
+
,

where,

PED(t) = AD(t)ZX + Vx(t)µX(t)δ∗ − IMDelta(t−),

PEV (t) = AV (t)Zσ + Vσ(t)µσ(t)δ
∗ − IMV ega(t−),

PEC(t) = AC(t)− (Vx(t)µX(t) + Vσ(t)µσ(t)) δ
∗ + IMDelta(t−) + IMV ega(t−),

PEJ(t) = AJ(t).

Then, based on this decomposition, we introduce four factor PFEs.
For explicit calculations, similar to equation (7), we aggregate ZX and Zσ into Z

and define PEZ .

PEZ(t) = PED(t) + PEV (t)

= AZ(t)Z + (Vx(t)µX(t) + Vσ(t)µσ(t)) δ
∗ − (IMDelta(t−) + IMV ega(t−)) .

First, we define the factor PFEs with the following conditional expectation.

f ∈ {D,V, Z,C, J}, PFEf (t) = E
[
PEf (t)

∣∣∣ PE(t) = PFE(t)
]
.

7Since An,Z(t) > 0 from equation (7) Mratio′ is monotonically decreasing in y, and therefore PFE can be
uniquely calculated numerically.

∂Mratio′

∂y
(t, y) = −

N∑
n=1

ϕ

(
An,M (t−) − y

An,Z(t)

)
pn(t)

An,Z(t)
≤ 0
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We can see that the sum of PFED and PFEV equals PFEZ under this definition.

PFED(t) + PFEV (t) = E
[
PED(t) + PEV (t)

∣∣∣ PE(t) = PFE(t)
]

= E
[
PEZ(t)

∣∣∣ PE(t) = PFE(t)
]
= PFEZ(t).

We can confirm that under this definition the aggregation of all factor PFEs
reproduces the original PFE.

PFE(t) = PFED(t) + PFEV (t) + PFEJ(t) + PFEC(t),

PFEZ(t) = PFED(t) + PFEV (t).

We set J as a discrete random variable with a set ofN elements, {jn | n = 1, · · · , N}.
Then, we define factor PEn,f and PFEn,f in a form further conditioned by J .

f ∈ {D,V, Z,C, J}, n = 1, · · · , N,

PEn,f (t) = PEf (t)
∣∣
J=jn

= PEf (t−, jn),

PFEn,f (t) = E
[
PEn,f (t)

∣∣∣ PE(t) = PFE(t)
]
.

Since J are disjoint sets, from Bayes’ formula, factor PFEs can be calculated as
follows,

PFEf (t) =
N∑

n=1

E
[
PEn,f (t)

∣∣∣ PE(t) = PFE(t)
]
P
(
J = jn

∣∣∣ PE(t) = PFE(t)
)

=

N∑
n=1

PFEn,f (t)
P (J = jn ∩ PE(t) = PFE(t))

P (PE(t) = PFE(t))

=

N∑
n=1

PFEn,f (t) ·P
(
PE(t) = PFE(t)

∣∣∣ J = jn

)
pn(t)

N∑
n=1

P
(
PE(t) = PFE(t)

∣∣∣ J = jn

)
pn(t)

.

Here, since PEn,C and PEn,J are functions that do not contain random variables,
both conditional factor PFEs can be treated as constants.

PFEn,C(t) = PEn,C(t), PFEn,J(t) = PEn,J(t).

Then, PFEn,Z can be obtained as follows.

PFEn,Z(t) = PFE(t)− (PFEn,C(t) + PFEn,J(t))

= PFE(t)− (PEn,C(t) + PEn,J(t)) .
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Furthermore, since PEn,Z is a random variable that follows a normal distribution,
the conditional probability can be calculated as follows.

P
(
PE(t) = PFE(t)

∣∣∣ J = jn

)
= P (PEn,Z(t) = PFEn,Z(t))

= P

(
Z =

PFEn,Z(t)−E [PEn,Z(t)]

AZ(t−)

)
= ϕ

(
PFEn,Z(t)−E [PEn,Z(t)]

AZ(t−)

)
.

E [PEn,Z(t)] = (Vx(t)µX(t) + Vσ(t)µσ(t)) δ
∗ − (IMDelta(t−) + IMV ega(t−)) .

Since PED and PEV are random variables that follow a normal distribution, the
conditional expectation PFEn,D can be calculated employing their correlation ρZ
between PED and PEV as follows. 8

PFEn,D(t) = E
[
PEn,D(t)

∣∣∣ PE(t) = PFE
]

= E
[
PEn,D(t)

∣∣∣ PEn,Z(t) = PFEZ(t)
]

= E [PEn,D(t)]

+
A2

D(t) + ρZAD(t)AV (t)

A2
Z(t)

(PFEZ(t)−E [PEn,Z(t)]) , (8)

ρZ =
A2

Z(t)−A2
D(t)−A2

V (t)

2AD(t)AV (t)
.

E [PEn,D(t)] = Vx(t)µX(t)δ∗ − IMDelta(t−).

Similarly, we can calculate PFEV as follows.

PFEn,V (t) = E [PEn,V (t)] +
A2

V (t) + ρZAD(t)AV (t)

A2
Z(t)

(PFEZ(t)−E [PEn,Z(t)]) .

E [PEn,V (t)] = Vσ(t)µσ(t)δ
∗ − IMV ega(t−).

4 Numerical Experiments for swaptions under the
SABR model

In this section we apply the CPR indicators in numerical experiments on a European
swaption under the SABR model. We then conduct numerical experiments with several
jump scenarios. As a result, we can confirm that IM calculated by ISDA SIMM may
not satisfy the regulatory requirements.

8See the appendix for detailed derivation.
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4.1 Pricing swaptions under the SABR model

In the numerical experiments we evaluate a European swaption under the SABR model
as a case study.

As mentioned above, regulations require derivatives transactions to be centrally
cleared. However, transactions with non-linear risks such as options are not subject to
the regulations and are traded in OTC because it is difficult for central counterparties
to specify a concrete calculation method of margins, similar to regulations in OTC
derivatives. European Swaptions are commonly traded as a plain vanilla interest rate
derivatives and are not centrally cleared due to its non-linear risk.

In this option the underlying asset is the forward swap rate X and when the option
is exercised at the maturity, a swap transaction can be initiated 9 at strike rate K. For
simplicity, we normalize the current annuity value to unity. The payoffs of options at
maturity T with the strike rate K are as follows:

V C(T ) = (X(T )−K)+, V P (T ) = (K −X(T ))+

Next, we set the valuation model as the SABR model, a special type of stochastic
volatility models proposed by Hagan et al. (2002). According to Brigo and Mercurio
(2001) and Andersen and Piterbarg (2010), this model is commonly used in the interest
rate derivatives market to represent the skew of the options market by setting the
underlying asset as the forward swap rate.

In this model, the forward swap rate and its volatility satisfy the following stochastic
differential equation under the swap measure Q.

dX(t) = σ(t)Xβ(t)dWQ
X (t),

dσ(t) = νσ(t)dWQ
σ (t),

Here, WQ
X and WQ

σ are standard Brownian motions with ρ ∈ [−1, 1] under the measure
Q. Furthermore, each parameter is a constant such that σ(0) > 0, β ∈ [0, 1] and ν > 0.

The CPR indicators such as Mratio or PFE are originally calculated under P.
Therefore, it is necessary to transform the measure from Q to P.

Here, we assume that θX(t) and θσ(t) are given as (Ft)-adapted processes satisfying
the following equations.

dWQ
X (t) = dWX(t)− θX(t)dt, dWQ

σ (t) = dWσ(t)− θσ(t)dt.

Then, according to Girsanov-Maruyama theorem, we can transform the Brownian
motions from dWQ

X (t), dWQ
σ (t) under Q to dWX(t), dWσ(t) under P. In other words,

the dynamics of X and σ under P can be determined.
In the numerical experiments conducted later, we set the drift term under P in the

same way as Kitani and Nakagawa (2024).

µX(t) = θX(t)σ(t)Xβ(t), µσ(t) = θσ(t)νσ(t).

9Depending on the contract, some options are cleared by exchanging cash.
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From Hagan et al. (2002) there are two types of approximation formulas for
European option price under the SABR model: a Log-Normal type and a Normal type.

The first one, which is closer to the log normal model, is following;

V C(L)(T − t,X(t), σL(t),K) ≃ X(t)Φ (d+(t))−KΦ (d−(t)) ,

V P (L)(T − t,X(t), σL(t),K) ≃ −X(t)Φ (−d+(t)) +KΦ (−d−(t)) .

where,

zL(t) := zL(X(t), σL(t), β, ν,K) =
(X(t)K)

1−β
2 ln X(t)

K

σ(t)
ν,

X(z, ρ) := ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
,

ΘL(t) := ΘL(X(t), σ(t), β, ρ, ν,K) =
1

24

σ2(t) (1− β)
2

(X(t)K)
1−β

+
ρνσ(t)β

4 (X(t)K)
1−β
2

+
2− 3ρ2

24
ν2,

σL(t) := σL(T − t,X(t), σ(t), β, ρ, ν,K)

=
σ(t)

(X(t)K)
1−β
2

[
1 + (1−β)2

24

(
ln X(t)

K

)2
+ (1−β)4

1920

(
ln X(t)

K

)4] zL(t)

X(zL(t), ρ)
[1 + ΘL(t) (T − t)] ,

d+(t) := d+(T − t,X(t), σL(t),K) =
ln X(t)

K +
σ2
L(t)(T−t)

2

σL(t)
√
T − t

, d−(t) := d+(t)− σL(t)
√
T − t.

The other, which is closer to the normal model, is following;

V C(N)(T − t,X(t), σN (t),K) ≃ (X(t)−K)Φ(d(t)) + σN (t)
√
T − tϕ(d(t)),

V P (N)(T − t,X(t), σN (t),K) ≃ (K −X(t))Φ(−d(t)) + σN (t)
√
T − tϕ(d(t)),

where,

zN (t) := zN (X(t), σ(t), β, ν,K) =
ν

σ(t)

X(t)1−β −K1−β

1− β
,

X(z, ρ) := ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
,

ΘN (t) := ΘN (X(t), σ(t), β, ρ, ν,K)

=
1

24

σ2(t)β(β − 2)(1− β)2
(
ln X(t)

K

)2
(X1−β(t)−K1−β)2

+
ρνσ(t)

4

Xβ(t)−Kβ

X(t)−K
+

2− 3ρ2

24
ν2,
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σN (t) := σN (T − t,X(t), σ(t), β, ρ, ν,K)

=
σ(t)(1− β)(X(t)−K)

X1−β(t)−K1−β

zN (t)

X(zN (t), ρ)
[1 + ΘN (t)(T − t)] ,

d(t) := d(T − t,X(t), σN (t),K) =
X(t)−K

σN (t)
√
T − t

.

From these approximation formulas we can derive the partial derivatives of V
(Vx, Vσ, Vxx, Vσσ, and Vxσ).

10 As a result, we can calculate the CPR indicators
specifically.

4.2 Assumptions for Numerical Experiments

We assume that the swaption strike price is 3% or 5% (OTM) and its option term is
T − t = 1 Year. 11 The payoff at maturity T are as follows;

V C(T ) = (X(T )− 5%)
+
, V P (T ) = (3%−X(T ))

+
.

We set the coefficient of the SABR model. First, we suppose β = 0.75 because the
interest rate level is high and the underlying asset is close to a lognormal process with
β = 1. In addition, ν = 20% for the volatility of the volatility and ρ = 0.5 for the
correlation between the underlying asset and its volatility.

dX(t) = σ(t)X0.75(t)dWX(t),

dσ(t) = 0.20σ(t)dWσ(t),

dWX(t)dWσ(t) = 0.50dt.

The MPoR δ∗ is set to 14 days based on Basel Committee on Banking Supervision
(BCBS) (2016).

δ∗ =
10Business Days

1Year
≃ 14Days

365Days
.

We assume the drift µX = 0 and µσ = 0 based on Kitani and Nakagawa (2024).
These parameter values are chosen to reflect typical market conditions for interest rate
swaptions.

In practice, the SIMM coefficients (RW, VRW) have different values at different
maturity 12 , but for the sake of simplicity, we assume RW= 60 and VRW= 0.20 for
all maturity, according to the SIMM coefficients in the regular currencies as shown in
Table 1.

10For specific derivations, refer to the Appendix.
11In the market convention the strike are generally used ATM, but since the underlying asset price changes

after the trade, the strike of almost all transactions are not ATM. In addition, since active funds, which
frequently use options trading, mainly trade OTM, which are low option price and high return, we mainly
observe OTM options in this study.

12ISDA SIMM defines three types of RW for each currency (Regular, Low volatility, High volatility).
Regular covers USD, EUR, GBP, CHF, AUD, NZD, CAD, SEK, NOK, DKK, HKD, KRW, SGD and TWD.
Low volatiloty is only for the JPY, while other currencies are classified as high volatility. VRW is common
to all currencies.
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Table 1: The SIMM coefficients version 2.7 revised in Dec 2024

type ccy 2w 1m 3m 6m 1yr 2yr 3yr 5yr 10yr 15yr 20yr 30yr

RW Regular 109 106 91 69 68 68 66 61 59 59 57 65
Low-vol 15 21 10 10 11 15 18 23 25 23 23 25
High-vol 171 102 94 96 105 96 99 93 99 100 101 96

VRW All 0.20

We consider four jump scenarios below. The expectation of both JX and Jσ is
identical across all scenarios excluding No-jump scenario.

• Stochastic
This scenario is designed to resemble the 1+3 standard employed in ISDA SIMM.
The method estimates the SIMM coefficients by histrical data that consists of one
stress year, such as the LB cases, plus three non-stress years.
In this scenario, with 25 % probability underlying asset and its volatility jump like
the LB cases with a decline in interest rate minus 1 % and a spike in its implied
volatility plus 20 %. With 75 % probability there is no jump.

j1 = (−1.0%,+20%), p1 = 25.0%,

j2 = (±0.0%,±0%), p2 = 75.0%.

• Constant
This scenario resembles to estimation of the SIMM coefficients. In this scenarios the
jump is not probabilistic and equals the expectation of jump in Stochastic scenario. 13

j1 = (−0.25%,+5%), p1 = 100%.

• Two-Steps
As an extreme jump example, we decompose j1 in Stochastic scenario into j1 and j2.

j1 = (−1.5%,+25%), p1 = 12.5%,

j2 = (−0.5%,+15%), p2 = 12.5%,

j3 = (±0.0%,±0.0%), p3 = 75.0%.

• No-Jump
There is no jump.

j1 = (±0.0%,±0.0%), p1 = 100%.

The scenarios and parameters assumed in the numerical experiments in this study
are shown in Tables 2 and 3.

13ISDA estimate SIMM coefficients as the 99% value of variation in 14 days calculated in four-years
data. Therefore, SIMM coefficients may be more conservative than the Constant scenario calculated as an
expectation.
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Table 2: Scenarios of Jump

Scenario J = (JX , Jσ) pn note
Two-Steps (−1.5%,+25%) 12.5% Decomposition of a stochastic

(−0.5%,+15%) 12.5% into two parts
(±0.0%,±0.0%) 75.0%

Stochastic (−1.0%,+20%) 25.0% based on 1+3 standard
(±0.0%,±0.0%) 75.0%

Constant (−0.25%,+5%) 100% based on the calculations
of SIMM coefficients

No-Jump (±0.0%,±0.0%) 100% Nothing

Table 3: Parameters

transaction K 3%,5% (OTM)
T − t 1.0 Year

pricing model β 0.75
ν 20 %
ρ 0.50
µX , µσ 0.00
δ∗ 14 / 365

ISDA SIMM RW 60
VRW 0.20

4.3 Result of Numerical Experiments

We first verify whether IM satisfies the regulatory requirements or not by evaluating
Mratio. If it is 99% or higher, we can confirm that the regulatory requirements are
satisfied. But, if not, they are not satisfied and we measure the risk amount by PFE.

In the numerical experiments, we conduct Mratio and PFE for the volatility σ in
the range of 7.5% to 22.5%. The same analysis was conducted for the relationship
of the underlying asset X horizontally from 1.75% to 6.25%. For these values, X is
the central level since the 1990s. Although we cannot observe σ directly, it is roughly
considered the central level.

Fig. 4 and 5 show that in No-Jump scenario, since Mratio ,depicted by the blue
line, stays near the 99% and this means that IM satisfy the regulatory requirements.
Conversely, in the other three scenarios, Mratio often falls below 99%, and this indicates
IM may not satisfy the regulatory requirements even in low volatility.

Next, we evaluate PFE in these three scenarios. It is observed that PFE in Two-
Steps and Stochastic scenarios are larger than those in Constant scenarios. This result
stems from the fact that in these two scenarios the impact is probabilistic.

Furthermore, PFE remained constant regardless of the level of σ.
On the other hand, Fig. 6 and 7 show that PFE increases as the underlying asset

price approaches At The Money (ATM, X = K).
Subsequently, we compare the differences in PFE between call and put options.

In this study we assume the impact is the Lehman Brothers case with a decline in
interest rates and a spike in their implied volatility. Therefore, in Put option as both
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Fig. 4: By scenario of jump, the volatility and CPR indicators. The scale of PFE is
on the left axis, and that of Mratio is other (unit: %).

Fig. 5: By scenario of jump, the volatility and CPR indicators. The scale of PFE is
on the left axis, and that of Mratio is other (unit: %).
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Fig. 6: By scenario of jump, the underlying asset and CPR indicators. The scale of
PFE is on the left axis, and that of Mratio is other (unit: %).

Fig. 7: By scenario of jump, the volatility and CPR indicators. The scale of PFE is
on the left axis, and that of Mratio is other (unit: %).
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the change contribute to increase exposure, you can see that PFE of Put option are
larger than those of Call option.

Finally, we check the factor PFE. It is evident that the jump factor PFE, depicted
by the red area, is the largest. In particular, in Two-Steps and Stochastic scenarios
where the impact is probabilistic the factor PFE of jump is larger than that in the other
scenarios. The results confirm that jump is a significant driver in PFE calculation.

We conduct numerical experiments with jump to assess whether IM calculated by
ISDA SIMM cover the exposure or not even under the impact of the SIC default. As a
result, Mratio clearly falls below 99 % due to the jump.

This result suggest that depending on the transaction type and the nature of the
jump under the impact IM calculated by ISDA SIMM may not eliminate CPR to
the regulatory level. Furthermore, it is crucial to accurately model the impact for the
measurement and management of the CPR.

We next examine whether MPoR reduction approach can mitigate CPR, as an
additional analyses.

5 Limited Effectiveness of MPoR Reduction

This section examines the effectiveness of MPoR reduction as a risk mitigation approach.
As a result, the effect of this approach may be limited depending on the transaction
type and the nature of the jump.

It is generally known that MPoR ( δ∗ ), the period from default to liquidation, is not
uniform, and varies depending on the legal form of the default and the circumstances
leading to the default.

Many derivative transactions are conducted based on ISDA Master Agreement
developed by International Swaps and Derivatives Association (ISDA) (2002). This
agreement refers to some definitions including the event of default (EOD) by Inter-
national Swaps and Derivatives Association (ISDA) (2006) and International Swaps
and Derivatives Association (ISDA) (2021). They also define the procedures for the
counterparty defaults.

Andersen et al. (2017) mention that financial institutions do not immediately
initiate the procedures in order to maintain their reputation. As a result of such policies,
MPoR may be extended, thereby unintentionally increasing CPR.

On the other hand, they also show that by reducing MPoR financial institutions
can mitigate CPR. A concrete method to reduce MPoR is to establish an operational
framework for prompt default procedures. From a legal perspective, they can reduce
MPoR entering into an amendment agreement bilaterally to refine the definition of
EOD to accelerate the triggering of default.

Here, we conduct numerical experiments of the CPR indicators corresponding to a
smaller MPoR.

Since in No-Jump scenario in the previous section the regulatory requirements are
satisfied, this section examines the other three scenarios.
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Fig. 8: By scenario of Jump, MPoR and CPR indicators. The scale of PFE is on the
left axis, and that of Mratio is other (unit: %).

Fig. 9: By scenario of Jump, MPoR and CPR indicators .The scale of PFE is on the
left axis, and that of Mratio is other (unit: %).
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Fig. 8 and 9 show that PFE decreases due to the MPoR reduction. On the other
hand, in Two-Steps and Stochastic scenarios MPoR reduction mitigates PFE of Call
options but even when MPoR is reduced to zero, PFE does not necessarily decline to
zero. In addition, it does not significantly mitigate PFE of Put options.

In the previous section we see that factor PFE of jump in these scenarios where
the impact is probabilistic is larger. Since it cannot be eliminated by this approach,
this approach cannot eliminate original PFE in these scenarios .

These analyses suggest that the effectiveness of the MPoR reduction approach
may be limited depending on the transaction type and the nature of the jump and
alternative approaches beyond MPoR reduction are required to mitigate CPR.

6 Conclusion

Traditionally, CPR has been discussed as an issue of risk management within individual
financial institutions. Therefore, financial institutions negotiated to reflect their original
risk management policies in the agreement on margin calculation and delivery. 14

However, after the financial crisis (2008), the initiative in CPR management has
shifted to the regulators, and uniform margin regulations have been implemented.
Especially since the mandate of the regulations, IM calculation method is simplified
and unified into ISDA SIMM.

On the other hand, it is generally known that a SIC default impacts financial markets.
To incorporate the impact ISDA SIMM adopts the 1+3 standard as a conservative IM
calculation method. But it does not accurately model the impact.

This study examines whether IM calculated by ISDA SIMM satisfies the regulatory
requirements under the impact of the SIC default.

We model the impact as a jump in risk factors, derive approximate formulas for the
CPR indicators, such as Mratio and PFE, and conduct numerical experiments under
several jump scenarios.

The results show that Mratio often falls below 99% in the scenarios with jump, and
PFE in the scenarios where the impact is probabilistic is larger.

It is verified that depending on the transaction type and the nature of the jump
under the impact IM calculated by ISDA SIMM may not eliminate CPR to the
regulatory level. Furthermore, it is crucial to accurately model the impact for the
measurement and management of CPR.

Acknowledgments. I am deeply grateful to Professor Hidetoshi Nakagawa, my
academic advisor, for his valuable advice and guidance throughout this research. I would
also like to express my gratitude to Professor Toshiki Honda and Associate Professor
Yuji Shinozaki for their valuable and insightful comments. This work was supported
by JSPS KAKENHI Grant Number JP23K04285, awarded to Professor Nakagawa.

14Before the margin regulations, an independent amount(IA), which plays the same role as IM, is set.
Although IA can be set even now, it cannot substitute for the IM regulations.
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Appendix

A Derivation of the SABR model sensitivity

Two types of approximation formulas for a European option under the SABR model
are proposed by Hagan et al. (2002), namely, the Log Normal type and Normal type.
In this appendix, we derive the partial derivatives of each approximation formula.

A.1 Log Normal type

The approximation formula of Log Normal type is shown as follows:

V C(L)(T − t,X(t), σL(t),K) ≃ X(t)Φ (d+(t))−KΦ (d−(t)) ,

V P (L)(T − t,X(t), σL(t),K) ≃ −X(t)Φ (−d+(t)) +KΦ (−d−(t)) .

where,

zL(t) := zL(X(t), σL(t), β, ν,K) =
(X(t)K)

1−β
2 ln X(t)

K

σ(t)
ν,

X(z, ρ) := ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
,

ΘL(t) := ΘL(X(t), σ(t), β, ρ, ν,K) =
1

24

σ2(t) (1− β)
2

(X(t)K)
1−β

+
ρνσ(t)β

4 (X(t)K)
1−β
2

+
2− 3ρ2

24
ν2,

σL(t) := σL(T − t,X(t), σ(t), β, ρ, ν,K)

=
σ(t)

(X(t)K)
1−β
2

[
1 + (1−β)2

24

(
ln X(t)

K

)2
+ (1−β)4

1920

(
ln X(t)

K

)4] zL(t)

X(zL(t), ρ)
[1 + ΘL(t) (T − t)] ,

d+(t) := d+(T − t,X(t), σL(t),K) =
ln X(t)

K +
σ2
L(t)(T−t)

2

σL(t)
√
T − t

, d−(t) := d+(t)− σL(t)
√
T − t.

Before proceeding with determination of the partial derivatives, we first derive the
relevant formulas for the standard normal distribution.

X(t)ϕ (d+(t)) = X(t)
1√
2π

e−
d2+(t)

2 = X(t)
1√
2π

e−
d2−(t)

2 −ln
X(t)
K = Kϕ (d−(t)) ,

−
d2+(t)

2
= −1

2

(
ln X(t)

K

σL(t)
√
T − t

− σL(t)
√
T − t

2

)2

− ln
X(t)

K
= −

d2−(t)

2
− ln

X(t)

K
,
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∂d+
∂y

(t) =
∂

∂y

(
ln X(t)

K

σL(t)
√
T − t

− σL(t)
√
T − t

2

)
+
√
T − tσL,y(t) =

∂d−
∂y

(t) +
√
T − tσL,y(t).

Using these formulas, Delta (Vx), Vega (Vσ) and Theta (Vt) can be derived as
follows,

V C(L)
x (t) = Φ (d+(t)) +Kϕ (d−(t))

√
T − tσL,x(t),

V P (L)
x (t) = −Φ (−d+(t)) +Kϕ (d−(t))

√
T − tσL,x(t),

V C(L)
σ (t) = V P (L)

σ (t) = Kϕ (d−(t))
√
T − tσL,σ(t),

V
C(L)
t (t) = V

P (L)
t (t) = Kϕ (d−(t))

√
T − tσL,t(t).

Also, Gamma (Vxx),Volga (Vxσ) and Vanna (Vσσ) can be derived as follows.

V C(L)
xx (t) = V P (L)

xx (t) = ϕ (d+(t))
∂d+
∂X

(t) +Kϕ (d−(t))
√
T − t

(
σL,xx(t)− d−

∂d−
∂X

(t)σL,x(t)

)
,

V C(L)
xσ (t) = V P (L)

xσ (t) = Kϕ (d−(t))
√
T − t

(
σL,xσ(t)− d−

∂d−
∂X

(t)σL,σ(t)

)
,

V C(L)
σσ (t) = V P (L)

σσ (t) = Kϕ (d−(t))
√
T − t

(
σL,σσ(t)− d−

∂d−
∂σ

(t)σL,σ(t)

)
.

where,

∂d+
∂X

(t) =
1

X(t)σL(t)
√
T − t

− d−(t)

σL(t)
σL,x(t),

∂d+
∂σ

(t) = −d−(t)

σL(t)
σL,σ(t),

∂d−
∂X

(t) =
1

X(t)σL(t)
√
T − t

− d+(t)

σL(t)
σL,x(t),

∂d−
∂σ

(t) = −d+(t)

σL(t)
σL,σ(t).

Note that, the function σL and θL takes a singular point at X = K.

σL(t) =
σ(t)

X1−β(t)
[1 + θL(t) (T − t)] ,

θL(t) =
1

24

σ2(t) (1− β)
2

X2(1−β)(t)
+

ρνσ(t)β

4X1−β(t)
+

2− 3ρ2

24
ν2.

In the case of X = K, the partial derivatives of the function σL and θL can be
derived by:

σL,x(t) =
σ(t) (β − 1)

X2−β(t)
[1 + θL (T − t)] +

σ(t)

X1−β(t)
θL,x(t) (T − t) ,

σL,σ(t) =
1

X1−β(t)
[1 + θL(t) (T − t)] +

σ(t)

X1−β(t)
θL,σ (T − t) ,
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σL,t(t) = − σ(t)

X1−β(t)
θL(t),

σL,xx(t) =
σ(t) (β − 1) (β − 2)

X3−β(t)
[1 + θL(t) (T − t)]

+ 2
σ(t) (β − 1)

X2−β(t)
θL,x(t) (T − t) +

σ(t)

X1−β(t)
θL,xx(t) (T − t) ,

σL,xσ(t) =
(β − 1)

X2−β(t)
[1 + θL(t) (T − t)] +

1

X1−β(t)
θL,x(t) (T − t)

+
σ(t) (β − 1)

X2−β(t)
θL,σ(t) (T − t) +

σ(t)

X1−β(t)
θL,xσ(t) (T − t) ,

σL,σσ(t) = 2
1

Xβ−1(t)
θL,σ(t) (T − t) +

σ(t)

X1−β(t)
θL,σσ(t) (T − t) ,

θL,x(t) =
1

12

σ2(t) (β − 1)
3

X3−2β(t)
+

ρνσ(t)β (β − 1)

4X2−β(t)
,

θL,σ(t) =
1

12

σ(t) (β − 1)
2

X2−2β(t)
+

ρνβ

4X1−β(t)
,

θL,xx(t) =
1

12

σ2(t) (β − 1)
3
(2β − 3)

X2(2−β)(t)
+

ρνσ(t)β (β − 1) (β − 2)

4X3−β(t)
,

θL,xσ(t) =
1

6

σ(t) (β − 1)
3

X3−2β(t)
+

ρνβ (β − 1)

4X2−β(t)
,

θL,σσ(t) =
1

12

(β − 1)
2

X2(1−β)(t)
.

A.2 Normal type

The approximation formula of Normal type is also described as follows:

V C(N)(T − t,X(t), σN (t),K) ≃ (X(t)−K)Φ(d(t)) + σN (t)
√
T − tϕ(d(t)),

V P (N)(T − t,X(t), σN (t),K) ≃ (K −X(t))Φ(−d(t)) + σN (t)
√
T − tϕ(d(t)).

where,

zN (t) := zN (X(t), σ(t), β, ν,K) =
ν

σ(t)

X(t)1−β −K1−β

1− β
,

X(z, ρ) := ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
,

ΘN (t) := ΘN (X(t), σ(t), β, ρ, ν,K)

=
1

24

σ2(t)β(β − 2)(1− β)2
(
ln X(t)

K

)2
(X1−β(t)−K1−β)2

+
ρνσ(t)

4

Xβ(t)−Kβ

X(t)−K
+

2− 3ρ2

24
ν2,
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σN (t) := σN (T − t,X(t), σ(t), β, ρ, ν,K)

=
σ(t)(1− β)(X(t)−K)

X1−β(t)−K1−β

zN (t)

X(zN (t), ρ)
[1 + ΘN (t)(T − t)] ,

d(t) := d(T − t,X(t), σN (t),K) =
X(t)−K

σN (t)
√
T − t

.

According to Kitani and Nakagawa (2024)，

∂

∂y
ϕ (d(t)) = − X(t)−K

σN (t)
√
T − t

ϕ (d(t))
∂d

∂y
(t).

Thus, we can derive Delta (Vx)，Vega (Vσ) and Theta (Vt) as follows,

V C
x (t) = Φ (d(t)) +

√
T − tϕ (d(t))σN,x(t),

V P
x (t) = −Φ (−d(t)) +

√
T − tϕ (d(t))σN,x(t),

V C
σ (t) = V P

σ (t) =
√
T − tϕ (d(t))σN,σ(t),

V C
t (t) = V P t(t) =

√
T − tϕ (d(t))σN,t(t)−

σNϕ (d(t))

2
√
T − t

.

From Kitani and Nakagawa (2024),

∂

∂y
ϕ(d) = −d

∂d

∂y
ϕ(d),

∂d

∂X
(t) =

1

σN (t)
√
T − t

(
1− X(t)−K

σN (t)
σN,x(t)

)
,

∂d

∂σ
(t) = − X(t)−K

σ2
N (t)

√
T − t

σN,σ(t).

Using the formula below.

∂

∂X
(−Φ(−d)) =

∂

∂X
Φ(d)

In this case, Gamma (Vxx), Volga (Vxσ) and Vanna (Vσσ) can be derived as follow,

V C
xx(t) = V P

xx(t) =

(
X(t)−K

σN (t)
σN,x(t)− 1

)2
ϕ (d(t))

σN (t)
√
T − t

+
√
T − tϕ (d(t))σN,xx(t),

V C
xσ(t) = V P

xσ(t)

=

(
X(t)−K

σN (t)
σN,x(t)− 1

)
ϕ (d(t))

X(t)−K

σ2
N (t)

√
T − t

σN,σ(t) +
√
T − tϕ (d(t))σN,xσ(t),
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V C
σσ(t) = V P

σσ(t) =
(X(t)−K)2

σ3
N (t)

√
T − t

ϕ (d(t))σ2
N,σ(t) +

√
T − tϕ (d(t))σN,σσ(t).

Same as the Log Normal type, the function σN and θN also take a singular point
at X = K.

σN (t) = σ(t)Xβ(t) [1 + θN (t) (T − t)] ,

θN (t) =
1

24

σ2(t)β (β − 2)

X2(1−β)(t)
+

ρνσ(t)β

4X1−β(t)
+

2− 3ρ2

24
ν2,

In the case of X = K, the partial derivatives of the function σL and θL can be
derived by:

σN,x(t) = σ(t)βXβ−1(t) [1 + θN (T − t)] + σ(t)Xβ(t)θN,x(t) (T − t) ,

σN,σ(t) = Xβ(t) [1 + θN (t) (T − t)] + σ(t)Xβ(t)θN,σ (T − t) ,

σN,t(t) = −σ(t)Xβ(t)θN (t),

σN,xx(t) = σ(t)β (β − 1)Xβ−1(t) [1 + θL(t) (T − t)] + σ(t)βXβ−1(t)θL,x(t) (T − t)

+ σ(t)βXβ−1θL,x(t) + σ(t)Xβ(t)θL,xx(t) (T − t) ,

σN,xσ(t) = βXβ−1(t) [1 + θN (t) (T − t)] +Xβ(t)θN,x(t) (T − t)

σN,σσ(t) = 2Xβ(t)θN,σ(t) (T − t) + σ(t)Xβ(t)θN,σσ(t),

+ σ(t)βXβ−1(t)θN,σ(t) (T − t) + σ(t)Xβ(t)θN,xσ(t) (T − t) .

where,

θN,x(t) =
1

12

σ2(t) (β − 1)β (β − 2)

X3−2β(t)
+

ρνσ(t)β (β − 1)

4X2−β(t)
,

θN,σ(t) =
1

12

σ(t)β (β − 2)

X2(1−β)(t)
+

ρνβ

4X1−β(t)
,

θN,xx(t) =
1

12

σ2(t) (β − 1)β (β − 2) (2β − 3)

X2(2−β)(t)
+

ρνσ(t)β (β − 1) (β − 2)

4X3−β(t)
,

θN,xσ(t) =
1

6

σ(t)β (β − 1) (β − 2)

X3−2β(t)
+

ρνβ (β − 1)

4X2−β(t)
,

θN,σσ(t) =
1

12

β (β − 2)

X2(1−β)(t)
.

Additionally, the function σN and zN of the Normal type also take a singular point
at β = 1.

σN (t) =
ν(X(t)−K)

X(zN , ρ)
[1 + θN (t) (T − t)] ,

zN (t) =
ν

σ
ln

X(t)

K
, θN (t) = −σ2(t)

24
+

ρνσ(t)

4
+

2− 3ρ2

24
ν2.
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B Conditional Expectation

For simplicity, we denote PED and PEV in equation (8) by X1 and X2, respectively. We
assume that X1 and X2 follow a normal distribution with means µ1 and µ2, variance
σ2
2 and σ2

2 . Each Xi can be expressed in trems of standard normal variables Zi as:

Zi = µi + σiZi i = 1, 2.

The corrlation coefficient between X1 and X2 (equivalently between Z1 and Z2) is
denoted by ρ. Then, PEZ = PED + PEV can be expressed as,

Y = X1 +X2.

Based on this representation, we derive the expectation µY and variance σ2
Y of Y

15 and the correlation coefficient ρ1,Y between X1 and Y , as follows.

Y = µY + σY ZY ,

µY = µ1 + µ2, σ2
Y = σ2

1 + 2ρσ1σ2 + σ2
2 ,

ρ1,Y =
Cov (X1, Y )

σ1σY
=

Cov (X1, X1 +X2)

σ1σY
=

σ2
1 + ρσ1σ2

σ1σY
.

Then we calculate the following conditional expectation.

E
[
X1

∣∣∣ X1 +X2 = A
]
= E

[
µ1 + σ1Z1

∣∣∣ Y = A
]

= µ1 + σ1E
[
Z1

∣∣∣ µY + σY ZY = A
]
,

where A is a constant which represents PFEZ .
Here, using a random variable Z which is independent of ZY , Z1 is expressed as,

Z1 = ρY ZY +
√

1− ρ2Y Z.

Then,

E
[
Z1

∣∣∣ µY + σY ZY = A
]
= E

[
ρ1,Y ZY +

√
1− ρ2Y Z

∣∣∣ ZY =
A− µY

σY

]
= ρ1,Y

1

σY
(A− µY ) =

σ2
1 + ρσ1σ2

σ1σ2
Y

(A− µY ) .

Finally, the equation is calculated.

E
[
X1

∣∣∣ X1 +X2 = A
]
= µ1 +

σ2
1 + 2ρY σ2

σ2
Y

(A− µY ) .

15Y follow a normal distribution from the reproducibility of normal distribution.
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